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U. S. BOARD ON GEOGRAPHIC NAMES TRANSLITERATION SYSTEM

Block Italic Transliteration Block Italic Transliterati
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osCEc csc csch csch arc csch 25Th
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TRANSLATOR'S NOTE: The word Dale should read dividinw.

Paqe 2.

The book is the original mcncgraph, which contains tha results

tf r-siarch cf thS authors cn 4he davolopgnt of arithmtic svs-:s

in the r sidual classs and th-eir raalizations in computer

t-chnclcgv. By the authors are stated tha bases of the new nu._ratcn

syst~m and is constructed machine arithmetic in this systetm. Svstm

in the residual classes ascendirg by its ideological roots tc thi

classical srct2.ons of the thccr c f numbers, ma-es it poss'h!- in .

new way to approach th* ccnstructicr of the ccmputsrs of high

effici.ncy. In the book ar,. stated the bases cf the special

self-correcting nonpositicnal ccde syst.as.

And to the basis of the th-cry ccmple ones by intgqrs in th.

field of whole real numbers without the distrinution into th. r.al

and alleg-d parts.-4

Thq baok is intended for enginoers, scientific wcrkers and

students of th, . senior ccurses, which specialize in the area f

computational tichnclcgy.

44 Tables, 51 illustration, 79 titles bibliography.
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Page 3.

77r-'Suls 'A~r. ClIt Gurin'g ':h' last f-w yc-rs by z4:~.

ones to t~ h: rollos cf th Q resea tche-s of the sqarches for wa. ys

* in~creasing tha jrol1uctiJvi4:y cf el,?ctronic ccaiju-,rs, rn&.hcds cf

orgirizinj the efficient acqu-.siticn system and correction cf or:rs

and building of hig~ly r~.iabNI, ccmnputpL complexas :idca-.:; e

authors in. the ooinion that ir t~e1'-2its of tha positional

r 4num~raticr syst'.ms it is not pcssIblt to expect any satisfactory:,,

aivanc? in thesze dizecticts withcut -a consid-irahle inczaase in-h:

operatini freq'iencies of el,:ments/cells and cc-aplicatior. of --- %

squinvm't Dart of 1figital comp~uter.

As jizk/i-mpulsp- to the rescarch in the ""ield of th

nonpositional nampratior systms werq used thf published in 19-5-1 57

work of Cz~ch s:i.ntists M. Valakh and A. SvotcAdy, edicated~t

reprgs-ntat-4cm of numbers in the fc-.,n of tne set of non-nsqao-4v=

dqducticrs ct± tn. group of mutually simuple bases/basezs, and

detegrmined ir -ornacticn with this reprasintatiol possibfi-JIy )f

exectitin'g the~ rational cperati-crs viTchout, takin; into accolint t:-.:
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ai.scha~gir-. ccrn~cti-cns iwet dgscfanubr

"Ihs car~i=-i out by the: authors this books in vest igat icns in th-4s

new numerato.system, naired thtesystem of resiltial classss, LF& to

*ha criatior. cf vezy p'culiar mclbriq arithnitic.

Thf-'i-iclt cf: x-!cution in trig systam or th~iz. u-

classes of the operatiors, requiring knowledge of entirs- numnar as a

wholz, but its not single stap-by-ste-p digits (iaterminaticr: c-f t.-:

si.gr cf- a numba!:, t hc ccmparison of nuuloers in the valut-, ':~

genreral an(' the like),* Frcvc-d tc te not insurffountable. Cam-zo1iE

* ~the possibilities of eliminating these lifficulties by ~~

in their cont.--t and character of r,,alization by mthods.

zPagei. 4

in tha pro:ass of research of specific charactqr and
4

Possibilities oil the system of residual classes it was possib.s to

censtruct the salf-corrsctirg ccde., completely zarithmpt-ic, ~.

suitable for detacticn and ccrricticn of the fr:ors, which n -:

only dur-inq the transmissicn of irtcrinaticn, hut also liilrj s

arithm-?tic prcc-ssing. Fcr thesp code-s it proval to be possAbL-

(which, until row, was cbssrved nct in what krown speacial pcs--i:ra~.

code systems) to construict the systqm of the correction. o: zr::):s
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during the introduction tc i irJzum r, dunancy, the using dyrna:.cs cf

comutational pzocess.

It was explained alsc that the idea of residual classes mi<:?s

Soos slc n a n-w way tc apprcach th o:gan zat-cn ot analc,

co sntzrs. ';C:. plann.ed t~s ways cf the ccnstruction of continic is

type devices/equipment, which make it possible to incrsase

substantially the accuracy of the sclut.on cn these devices/ .]uipm:-..t

of tasks with th? relatively Ic Frccisior of .tuit-3 analog -umnnt.

Th- systpm of r-s.idual classes make.s it Fossibla tc

substantially improve the parameters cf ccmputers in compariscn with

the machins, constructed cn the same physicotechnological nasi-s;, but

in the positional nuimeration system, and to also obtain n-w mo:--

progressive constructive and structural solutions.

4 1 It should be noted that the system of r:silual classes not th=

only possible nonposit.icnal numeration system. It is pessible to

construct the ssriss/row cf the nw systems, to different dgr-.

which combine the special features/peculiarities of th- positional

and ncnpositional nums-ration systems. Howover, the rpsults ef

research according to the general thecry cf ncnpositional systims a-.

not connected with the present moncgraph, taking into account -"s
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The idcas of the ncnFcsiticra] nunlzration systzms do nct Iraw

thus far so wid- a contingent ct scienti fic ard enginee-rinq w orKe rs

as th~ps iaes of that desctrve. This wcrthy of =sgr-7t circumstacr :.s

:xp~la in-d b~y tft tairlv fact that th= rzsults of thq ajcri-v 7

r: s=arch 4-' --h= :4aicr cr nor.csiticnal systemrs yet dla notzc~-

thle- n:op~r4!y cf ths wid-- circlr cf --hr sppcialists :n viow : -

abspnc? of ths proparly syst-'watized publications. Litarature- ti

* series of question consists only cf the small se:ries of art--cl- an!i

furthsrrrora c-- thoss publishora Jn "h 1little ercoun-cr:;d

publicaticns.

Suc-cifically, thl:i irt: nt2cr to completa this gap/spaci'j 1-1f hy

the authors, who launched in t1-is ffcnograph the: attcempt to

systemtically prtscrt the baSiC thnor,7.tical and practical as::cts CZ

the systam of r- sidtia.l classes.

4-

Page 5.

For the purposm of simplif yina to reader the- mastery/adopt_ or '

thq matsrial cf the book is irtrcduced chapter 2, in which is

prrzsente -d the r~ccessary informaticn from the theory of numbers, it is

more exact, comparisons. For this purpose the almost each oar agratv
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of tli-z bocK is a=-comoanic- by the- ill1ustratin '-he sr-t-f-c:::h

posit-4ns e xairpl-as.

Besid?s chaotir 2 and par~ially chitp= I aonograph,

corta~rs t:hs zr srn'a-,cr~ of t~-s c:, :ii I :--sa rch, carri,= our: I),

ah autho 0rs -4 . t L !at+ r-as t z;C- C '

Ur.1fortunatal.y, thr- siri _,/rcw cf impc:,:nt And usertul s c, :ons

*t thev could rot b; =cc-nctod with th;, bo:k in vi4:w of th- li _ ies

of its capacity. in =ead,;r's this Elan/layout after aci;Ja~r.'an4

* ~the material, pressnted ir this bcck, itis necissa~y -to fr:~~

scr SP4 clal articles.

Tho bock is _intnded fcr tho sci~ncific workars arn. ngn"s

who ca-ry out the dqvelcpmsnt cf elsctrcnjz- ccmputers, and h

students of the~ sarior Folicies cf highar aducatiornal _nst4__tJ~inrs

4 for ths appropri-ate specialties.

The authors expr ess l ope, that the appearance of this ',-cck wl

contribute to tna expansion cf research according to the th-?ory an!

to the practical rqalizatior Cf rumeration systam, in the2 rcsil~vtl

classes and to the intrcducticr. of this system into coniputsr

tpchnolcqy.
ku h-rs.

Pace 6.

NC typing.
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2 a3:c 7.

Chacter 1.

I'lTRODUCTTON TO NUJMEATIC-N SYSTEL IN THF - ESICUAL CLASSES.

Fir. ~erg~rcs and th,: d-vs1cpment of 4.h-s ._npcsitior n nuTa:~

S ystemis.

A: D:sr:i is r ct FcssibL 1e toc vi sua li ze a ny ccm ulic~

automatic systzai without its C?rte: section being cornpcsc-o *ri

comotutsrs, which fulfill the furcticns of -orocessiig infom:3tcn.a

control. Actually, in each autc~atic svsten! spcific ar=- th, s=rnsors

cof inforrnaticn azd actuatirg elamerts, and in other rospocts sv ztr--:

ftec c n s 4S -s or f c- s tardard ccnrputers, which ensure

4+Rzconn, ation and1 cccrdinat-d interaction of ill d-3vicres/,: u~mer:

of system.

rhe refcore is obvious the value of ths :esearch, dpedicaltEd t L

new Dr4ncipleS of the ccrstructicn of electronic computers, to 1'hz

raticral ,.nthcds cf orgarlizing their wcrk, to tnta s3archr-.s for

Pffective rmear~s of their use/aprliation.
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The new ways of organizing of structure and logic of elect: or2.c

computers qncompass bcth the directions of the complicaticn of

structure and logic of machines fcr an increase in their efficiency

and search f or the new systems cf numeration and new methods of

organizing th0 joint operation cf all d~viJces/-e4uipment of machi4ne

and entire machine as a wiole.

Page 8.

During the developsent of the structure-- of mathematical machircx

one of the basic questienms is the selection of the appropriate

representation of numerical infcruation, i.e., the. corresponding

code. Numeration systems are the different methods of the codinj of

numerical information.

Principal requirements for any intended for the practical

use/application code system (i! we clear the requirements, which

escape/ensue from the infcrmaticn theory considerations) essence

following:

a) the possibility of representation in this system of any valu!9

in the considered/examined, predetermined range;

b) the uniqueness of represertation -any code combinatic'.
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corresponds to one and only to one number in the preset range;

c) simplicity of operaticn with numbers in this numeration

system.

Th9 capacity of range, i.e., a juantity of different numbers

which can be represented in this ccde system, obviously, is

determined by tne number cf differqnt possible code ccmbinaticns.

The- search s for the new ways of incrpasing the efficiency in

the execution of arithmetic creraticns led researchers to the

conclusicn that within the frampwcrk of the ordinary positional

system of the considerable acceleration of the execution of

operations cannDt bq attained almost. These or other single methoas

and improvements of the algorithms of the execution of cperation,

contributing to the more raticnal organization of work of arithmetic

* units, leave nevertheless the productivity of these devices/equipment

within the framework of ore and of the same order. Output/yield

beyond these limits requires the enlistment of new ideas, new logic

and new ar.thmetic.

It should be noted that the positional systems of the

numerations, in which is represented and is treated the information

in the contemporary computers, possess assential deficiency/lack -
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the presence of the interbit/interbyte :onnections which superinpose

their print on the methcds of the realization of arithmetic

operations, complicate equipment and limit high speed. Thereforq is

logical the research of the possibilities of th_ construction of such

arithm-tic, in which step-by-step ccnnections wire absent.

It turned Dut that this arithmetic can be constructed on the

basis of the nonpositional system of numeraticn, in particular

numeration systems in the residual classes.

Page 9.

Ascending oy its ideclogical rcots to the classical works of

Euler, Gauss and Chebyshev acccrding to the theory of comparisons the

systam of rpsiiual classes is intended tc introduce new jet into tha

development of the principles cf the efficient construction of

high-productivity computers.

In the system of residual classes numbers are represental by

their remainders/residues from the division into the selectod system

of bases/bases, and all raticnal cperations can be made in parallel

above the digits of each digit individually. However, in so

convenient a in one sense system cf residual classes is inherent the

number of deficiencies/lacks in other resFactE: the limitedness of
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the operation of this system by the field positive integer numbirs,

the difficulty of determining the relationships/ratios of numbe-rs

from the value, the determinaticn of the output/yield of result of

opc-raticn from the range, etc.

So that in the system cf rasidual classes it would be pcssibl.:

to construct computers, it is necessary to fird the fundamental ways

of overcoming these difficulties and to find the efficient methods of

the constructicn of machine arithmetic.

§1.2. Positicnal numeration systems the formation/educaticn cf the

digits of the representation of a number.

Determination. If is preset the series/rcw positive inteqr

numbers , .... , a,, subsequently cf those called rice, then under

the generalized positional system we will understand such systm, in

4; which integer N is represented in the form

N = a_1t .- ,2 ... X2ti + an-21n-23n-5 •• -1

.+ ., + a, + o. (I.)

where digit aj_, are numbers 0,1 ..... j- (1=1,2. ). consecutive

obtaining of which can be realized by the following process:

.,L&L-
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N te.'ca Ha -t,. flPH 3TOM K;. a , .V . , ):4) W1

A", ,e.iHTCAl Ha A., nPH 3TO.I . = -

0 ( 3 ) i -
Nj-,ae.IHTCR Ha'fpnlH 3TOM L -J N H N 

NV,-,:XeJIHTCR Ha . n 7M=,

Ky: (1). it is ._vidd into. (2). in this case.

Page 10.

,H 4r 3nd subsrquntly [Y] it designates whole syllable Y.

The capacity of the range of represented in this system numb'rs

O is qqual to

For the described erccess characteristically precisely

consecutivq cbtaining of the dig.ts of e.ach digit in the strictly

4 "defined order (beginning from the lw-order digit), when the result

of the previous stage (obtained in this stage quotient) participates

as the dividend in the follewing stage. This reflects the inh.rant in

the positional numeraticn systems dependence between the digits of :

number, which with the fulfillment of the operations on numbers in

tha positional system imply .h- need for the account of transfers

from tha low-order digits intc the adjacent senior. This depsnd-nca
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of digits burdens to a ccnsid'rable degree the equipment cK.cjt!or cf

operations and limits pcssibilities in the achievement of nigh spe-!

operation and simplicity ef r*alization.

If w. irtroducp the desigreticn

the ;expressicn (1.1) car te registered in the form

N=a-,_p,_ +a, 2 ...± + a,p, +ao. (1.2)

In the particular caseL n,=n .... =p we will obtain

•= a.-,p-' + a-,pP' t.• + ap + ao. (1 .31

Hare all consecutive irdexings are ccnducted on on% ard :h: si-

number p - base of system, and we thus obtained the ordinary

positioral syst3m, whcs- capac.ty -T of th% range of representil .

this systqm numbers was equal tc

Choosing basis/base p equal tc 2, 3 ... , it is possiblq to sort

cut all pcssiDle positicnal numeration systems.

In the digital electronic computers prevailing value obtained

binary and decimal systems. The latter larger partly is appliel in

the binary-codel form. Are known machines, constructed in the t rr.ary

system, nuseration system with tasis/base pz- , etc.

Page 11.
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The aidvisability of the introduction of nogative bases/bas.s depends

on the fact that the sigr organically is included in the

representation of a number, iz ccvnection with which there is no need

for in the special rapresentaticn cf the sign of a number.

Inconveriance in the real. zaticn of this system consists in th'

process of addition - to cne dicit can arrive two transfers, which

compiicatis the diagram ct 4r

Frci the point cf view cf the range of the rep-esent,.d nmbers

in the case of negative tasis/hase cccurs certain dissymmetry. Thus,

with even n (or with an even ouantity of digits of a number) cf ths

negativs numbers it can be represented more than positive on-s, arO.

with the odd vice versa.

For example, with n=4 entire/all sqt of numbers is such:

0001= +I 0110=+2 1011=-9
0010= -2 0111=- ,-3 1100= -4

0011 = - I 1000= -8 I101 = -3

0100= -4 1001=-7 1110=-6
0101 =+5 1010=--10 1111]= -5.

Here positive numbers 1, 2, 3, 4, 5, and nigative 1, 2, 3, 4, 5, 6,

7, 8, 9, 10, i.e. the range of regative numbers are twice more then
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as the range of positive numbers.

For case of n=3 the set of thbe represented numbers will te

registered in the form

001 = +1 101 = +-5
010=-2 110= -2
011=-I II= -- 3

100= 4

In this case the range of positive numbers more than twice

exceeds the range of negative cres.

Are known the reflected in large quantities of works diff. rn ".

logical and circuit methcds of acceleration ard rational organization

of the execut.on of cp'rations.

Page 12.

In all thqse works as basis was assumed positional system, ani one

should, apparently, consider that Froposed in these works ways of the

more efficient axacution of oFerations axhaust in many respacts of

possibility the positional of systim and further any consid-rible

acceleration of the execution of cperations, remaining within tna

framework of positional system, is hindsred/hampered.

The searchss for the new ways cf the construction of tho
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arithmetic units, in which the cperations on numbezs would ba maie as

simply as possible, morecver so, that the dspendence between tits was

excluded and would drop cut irtertit/interbyte transfers, they led to

the use/application for these Furrcses of the apparatus of calculus

of rasJtu-s. The leducticrs ave heen 'n -"n I' ,- - -e en I -e

n stated ir the elementary ccurse cf the theory of numbers; howav-r,

until r.cently the pcssibility of their practical use in comFuter

technoloily was not examined.

I

The theory of numbers applies deductions for solving tho

series/row of specific for this field of science tasks (comparison,

iiophantine analysis, etc.). Meanwhile the use/application of

deductions as tia nonpositional numeration system in computer

technology places other entirely Froblems, on successful solution :)I

which lepends not only th- efticiency, but also generally the

advisability of applying this system.

1.3. Numeration system in the residual classes.

Detersination. If is :reset the series/row of positive- int g.s

P,. P2. P,. of those called sutsecuently the basis of systam, than

under num-ration system in the residual classes we will understand

such system, in which positive inteaqr number is represented in t-.

form of thp set of remainders/resilues (deJuctions) cn the s-.licted
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bases/bases
N = ( a,, CE . . .,)

moreover the formation/education cf digits af is realized by the

following process
-j = N - Pi ;or i=l,. 2 ... n, (1.4)

i.e. the digit of i digit a, Cf ruber I e the smallest pcsitivs

remainder/residue from divisicn of N on Pi.

Her - in contrast to the ge-neralizei positional system formation

of the digit of each bit will foresee itself independently of each

cther. The digit of i digit a; is the smallest positive

remainder/residue from the divisicn of very number M, but the not

previous quotient, as this occurred into §1.2, to i basis/bass aj. It

is obvious that at<p,.

Page 13.

4

In the theory of numbers it is proved that if numbers pi are the

mutually simple between tbemselves, then the described by digits I
, 2, . a, representation of number N is single.

The capacity of the range of the represented numbers in this

case, as can easily be seen, is equal to

, =pIp2 ... pn.

. .a . g- .. :=:L ,. .. .. , : .. . . ... . .. . . .. ,. = . _ ] , ,, . = . ,,, =..: : =... ,. .. . . . ..n .
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Hare, as in the generalizvd Fcsitional system, the range of th-?

represented numbers he increases as the product of bases/bases, anl

the bit configuration of numbers N he increases as the sum of the bit

configuraticns of the same basgs/bases.

Let us ccnsiizr the rules cf the -xecuticn of the cperations cf

addition and multiplicaticn in the system of residual classes if both

numbers and result of operaticn are found in the range [OE). La t

operands A and B be represented resFectively by remainders/residues

at and P on bases/bases Pi wath i=1, 2, ... , n.

The results of operation of addition and multiplication A+B and

AB are represented respectively by remainders/rgsidues v, and Ai on

the same bases/bases p1, i.e.

A = (a,, a, . a),

AB =(pi,y 2 , P.'n),A + B = (VI, V2, .... n),

AB = (6,, 8. 60,

and in this case occur the relaticnships/ratics:

A<91, B<&, A+B<8, AB<&.

It is zlaimed that Yi is corgruent with atP in modulus/modiul,. p,.

and 6, is congruent with a in the samq modulus/module, i.e.,

Y i +, P (mod pi),
bia (mod p,),

In this case as the digit of result it is taken respectively
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yi=ai+pi [ai- IP 1. (1.5)

Actually/really, on the basis (1.4) it is POS-cible to write

hagt 1,2. n.

Key: (1). for.

4 Page 14.

* From reprasntation A and 5 it follows that

B lip, + pi,

where ki and 1, whole ncn-neyative numbers. Then

.4 + B (ki + !i) pi + at + pi,

1=, 2, .,n

whence
at [ Pt -] P1,

that also proves (1.5).

In the cass of the multiplication

AB- L
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Taking into account (1.7) , we will obtain

AB -k 1iip! + (aj1i + Pikj) A + A~,

PI PI

Consequently,

6
jt~gig Pi

that also proves (1.6).

Let us consider the examples, which illustrate the given aoov:

rules of the exacutio. cf the c~erations of addition and

multiplication.

Let the basis of system be

pa=3 , p2= 5 , P3= 7 .

The range of system will he defined as ,o=jp2 p3=ios.

Example. To sum number A=17 with number 0-63.

on the selactad bases/bases numbers A and B in the system of

residual classes will be represented as

A-17-(2, 2,3),
B -63=-(0, 3, 0).

in accordance with (1.5) ive will cbtain

A+B=(2. 0,3).

Page 15.
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Easily it is chackad, that rumbe-r (2, 0, 3) is 80 equal tc the sum of

operands.

Example. To multiply numtpr A=17 by numbcer B=6.

In ths system of rrsidual classes numbers A and B will hi

represented as
A=17 =(2, 2. 3).
B B 6= (0, 1, 6).

in accordance with (1.6) we will cbtain

A B = 0, 2, 4).

Easily it is checked, that numiber (0, 2, 4~) is 102 and it is e-qual to

the product of operands.

Let us describi- in general terms the advantage4s and

disadvantages in the intrcduced rumeration system in the; residual

classes.

To the advantages shculd be related:

- the independence of thp fcrmation/education cf the bits of a

number, by virtue of which Rach bit carries information about ertire3

initial number, but not atcut t~e intermediate number, which is
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obtained as a :=sult of fcrming th? lcw-order bits (as it takes Ulaco

in the pcsitionil system). hence ensues/escapes/flows out the

independence of the bits cf a numher from each other and the

possibility of their independent parallsl processing 1;

- Lod-nature of the remainders/residues, which represent a

nu mbe r.

FOOTNOTE 1. This special feature/peculiarity subsequently will make

it possibls to iraw fundamentally new m=thods of arithmetic check.

During the introducticn cf further control basis/base the

remainler/resiiue, undertaken on this basis/base, carries surplus

information abcut an init.ial number, which makes it possiHlf to

discover and to correct tle errors in the digits from the working

basis of system. ENDFOOTNCTE.

In view of the small number of possible code combinatiors is

disclosed the possibility of the ccnstruction of tabular arithmetic,

thanks to which the majority cf the operations, performed by

arithmetic unit, are converted into the single-cycle ones,

implemented by simple sample of the table.

Page 16.



DOC =81023901 PAGE

To main disadvantages in tte numeration system in the r-sidual

classes should be related:

- the impossibility cf the visual comparison of numbers, since

tie 9xtornal re:ording cf a numuer doas not give representaticn abcut

its value;

- absence of the simFle signs/crit-iria of the output/yield of

results of cperaticn beyond the limits of range 0O,,);

- the limitedness cf the operation of system by the sphars

positive integpr numbers:

- obtaining in all cases of accurate result of operation, which

excludes the possibility cf the direct approximate executic cf

operations, rounding of result, etc.

The elimination of deficiencies/lacks in the system or at least

weakening the operaticn cf these deficiencies/lacks and most compl:?-

use of its advantages in thc implemantation in the computers composrb

the basic content of machine arithmetic in the system of residual

classes creation by which puts forth its specific problems.

§1.4. lethods of the intrcducticn of negative numbers.
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The given above representaticns of numbers and operations above

them related to ths positive numbe.s.

Let us ccnsider the rulps cf the executicn of the operation of

subtraction in the system of residual classes if both numbers and

result cf operation are fcund in the range [0, &I.

Let operands A and E be represented rqspectivgly by

remainders/residues aj and P cr hases/bases pi with i=1, 2, n.

rhe result of operation of suttraction A-B is represented

respectiv.ly by remainders/resJidues 7, on the same bases/bases Pi.

i.e.
A I (an,).. ..
B = 13, ... p.),

A -- B =(y, y, . n),

and in this case occur relationships/ratios; A<&, B<P,O<A-B<&.

Analogous (with 1.5) we will obtain for the subtraction

y - . I (modp;)

i=1,2, ... , n.

The operation of subtracticn wben its result is positive, is

implemented by the subtraction cf the correspcnding digits of igits,
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moreover as a result is always givwn th'i smallest posit.4vP

remainder/residue, as this fcllcws !rom the determination of the

system of residual classes.

In other words if a difference in the digits proved tc be

negative, then is taken its additicr to the basis/base.

Page 17.

After the exr-cution cf operaticn the sign of result in ary way

in it in is reflected. Strictly speaking the signs of components with

the execution of oppration arc not treated and, therefore, is not

formed the sign of result.

Appears the need for introducirg in a special manner sign into

the representation of a rumber and determining the rules of the

execution of cparaticn, which ensure obtaining not only the value of

result, but also its sign.

Let us consider the possible varsions of the introduction of

negative numbers.

PI, P2 . ., pm - radix. Range 0 cf represented in this system

numbers will be defined as

"'=Pi, P2. PI.

JON
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Let one of the basis of system be equal to 2. For the certainty

we assume/set pl=2.

Let us dqsiynate thrcligh P value

P1 2

or
P P3 ... P--

* In the systam of the residual classes

* P=(1, 0, 0,., 0).

We will use with the numbers, which lie in the range,

0<fNj<P.

Lat us taka as zero numbers P and iie will =-epresent positivi

numbers N=jNVI in the for.p N'=,6-I.VI. and negative numbers NV=-Nt

in the form N'=P-INVI. Then with the algebraic addition we cbtair the

following form of the representation of tha positiva and rnagativF

numbers:

This means that in the representation accepted which let us naire

artificial form, we will always deal concerning the positivc numbers.

However numbers in the interval [0, P) in the artificial form thers

will represent negative numbers, ard in interval 1P, 9.)- positive.
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Page 819.

If result of operaticn dces not exceed the limits cf new range

[0, P), it is possible tc implemert the operations of addition and

subtraction as follcws.

AssumS it .s necessary tc find the sum of two numb4rs , ard N .

'at us take th.ir artificial forms

and let us sum

V .P+ .+P + N 2 =2P+(N+N 2 ). (19)

The artificial fcrm of sum is
(V A N-)'= (N H V2) + P, (110)

whence

.V1 7_- 1%"2)' NJ' N2 P,

or, the same, since P=-(, 0, 0, ... 0),

(N jN 2)' =A'+,V; P. (I. l)

Let us consider thq examples, which illustrate the formulated

rules. In these examples it is assumed:

Pt= 2 , P2= 3 , p3=5, p4=7, P=3.5.7=i05.

Example. N 1 =17, N2 =41. we form th* artificial forms of the

preset numbers
Ni =(1, 0, 0, 0) -(1, 2, 2, 3)=(0, 2, 2, 3),
N;=-(I, 0, 0, 0)+(I, 2. 1, 6)=(0, 2, 1, 6),

on the basis (1. 11) obtain

(Na +Nz)' =(0, 2, 2, 3)+(0, 2, 1, 6)+(I, 0, 0, 0).(1, 1, 3, 2).
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Number (1, 1, 3, 2) is tho artificial form of the sum of the

preset numbers, what is checked by transition to the decimal system:

(17+41)'-(58)'-105+58=(1, 0, 0, 0)+(0, I, 3, 2)=(1, 1, 3, 2).

Example. M1=17, N1 =-4I. We tcrm th _ artificial forms of ths

praset numbers
V I=(1, 0, 0, 0)-(1, 2, 2, 3)=(0, 2, 2, 3),
N;=(1. 0, 0, 0)-(1, 2, i, 6)=(0, 1. 4, 1).

Lit us sum thas=, numbers and on the basis (1.11) we will 3btain

(N+N)'=(0, 2, 2, 3)+(0, 1, 4, I)+(1, 0, 0, 0)=(I, 0, 1. 4).

Let us produce zh.zking by transition to the decimal system:

(17-41)'-(-24)'=105-24=(1, 0, 0, 0)-(0, 0, 4, 3)=(1, 0, I, 4).

Example. N1 =-17, N2=-41. We form the artificial forms of the

preset numbers

N:= (, 0. 0. 01 -( . 2. 3)=(0. 1. 3. 4).
Nj=1, 0, 0, 0)-(1, 2, 1, 6)=(0, I, 4, 1).

Page 19.

Last us sum these numbers taking into acccunt (1.11)

(NI+N 2 )'=(0, 1, 3, 4)+(0, 1, 4, 1) -(l, 0, 0, 0)=(1, 2, 2, 5).

With transition to the decimal system we produce the testing

(-17-41)'=(-58)'= 105- 58(0, 0, 0, 0)-(0, 1, 3, 2)=(I, 2, 2, 5).

The transition of positive number into the negative and oack,

i.e., the fcrmation/education cf Its two's complement, is produced by
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the subtraction of this number cf the number
(I, P2, P3 . .. p,).

Thus, under conditicns of the examples 49XGcMn-
*,-41 =(1, 2, 1,6); -41 =(1, 3, 5, 7)-(1, 2. 1, 6)=

=(0, 1, 4, 1)=64.

'-t ih:-i b-e nc-ed hY "t' -lat~-an

reprissntpd in the artificial fcrr, then for cbtaining twc's

complement it is necessary tc suttract it not of the number

(1, P2, . p),and from (2, P, . P,)

Lat us considar the exampl.es, which illustrate the methcl of

conducting the subtracticn indicated.

Example. N1 =17, N2=41. Let us pres.nt the preset numbers in ths

artificial form

Nj = (0, 2, 2. 3), ./ = f0. 2. 1, 6).

We form the two's complement N2

( N-7)'- (2, 3, 5. 7) -(0, 2, 1. 6)=(o, 1, 4, 1).

Let us sum N', and N'2 , taking into account (1.11):
(St- N2)' -(NI,+(-lNz))' Nj + (-NZ), + P--_

--(0, 2, 2, 3) + (0, , 4, )+(0, 0, 0, )=( o, 0 1, 4).

On cne of th. provicus examples it is kncvn that (1, 0, 1,

4)=(17-41) '.

Examplc. NL=4, N2 =17. We form the two's complement N'2 :

Nz)'=( 2 , 3, 5, 7)-(0, 2, 2, .3)=(C, 1. 3, 4) and we furthiqr iplemq.-.
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the adl.ition I

(NI - N2 )'- Nj + ( - P .V2)' P =

-(0, 2, 1, 6) +(0. 1, 3, 4) +(1. 0, 0, 0)-- (1, 0, 4, 3).

By transition to the decimal system we check, that

(41 -17)' - (24)'= 106+24=- (1, 0. 0. 0) + (0. 0, 4, 3)- .(1.0, 4. 3).

Page 20.

From methods of procedure of addition and subtraction presrntd

it follows that, applying the artificial form of the represqntation

of the codqs (with zero dr±ft on F), is possitli to carry cut the

operaticns cf aiditicn and suttraction above the artificial for's,

obtaining always correct (both in the value, and on the sign) rsult,

although sign it is hidden in tte fcru of the representation of a

number and we zinnot visually determine, it is positive or rrgativ .

Lat us switch ovqr tc the operation of multiplicat-c. As :t is

above,
N= P + N, N. = P + N2 ,

then

NN, P (P + N( +2) + NN,.2)

whence
(,VN)' N, + P - P (P + N + ,V2)

Taking into account that P=(1, 0, 0, ... 0) and that the initial

numbers ar' preset !n the artificial form, we will obtain

(NVI %")' NN -+ P (I + P ,+ N.).
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Since P is odd, we will cbtain

(N,,V2)'= NN + P (N +N) (1.13)

It is obvious that the parity or oddness N'1 +N'2 will detarmi.-,

in what form will be obtained the result.

Expression (1. 13) can be registered as

,%V,, c. ,¥IH N ,V o H.aKoR o4 'eTHOcT, )NiN.+P, ec.H N, H N a3HOA qeTHocTH.

Key: (1). if. (2). identical parity. (3) . different parity.

One or the other alternative determines the need for the

correction cf risult. If NO, ard N'_ different parity, we obtain the

result ef multiplication immediately in the artificial form, but if

NI WA,% 2 of ilantical parity, to the rsult it is necessary to

aijoin p=(1, 0, ... , O)ir order tc convert it into the artific,.1l

form. Since cna of the basis ef system was selected p1= 2, then in.

ter2s of the value cf the remainder/residu% of a number by this

basis/base we judge abcut parity cr oddness of a number itself.

Hence the tralysis of a sirgle number or sum to tho parity or

the odiness is produced on the single-column remainler/residiie on

basis/base p,=2. It is lcgical that the odd numbers will have in the

reainrler/resiii& on this basis/base unity, and even numbers - zero.
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R-spectlvs3ly and the correction of result, if it is raquir-.d,

i.e., addition P=(1, 0, 0, ... , 0), whose single remainder/resilus on

basis/base pt-2, and others - zerc, it is reduced to the inversion of

the value of th? remainder/residue cf result cn basis/base pl.

Page 21.

Let us give the exampl.s, which illustrate the execution 2f t!e

operation of multiplicaticn. The system of bases/bases the saia as in

tV- orevious eximples.

Example. N,=7, N,=13. Let us present the preset numbers in tha

artificial form N; =(1, 0.0. 0) + (1. 1. ,. 0i (0. 1, 2, 1.

N = (, 0, 0. 0)-(I. . 3, 6)- 10. 1. 3, 61.

We compute product N''N'Z:

Ni.'=(0, I, 2, 0)(0. 1. 3, 6) - 0, I. 1. 0).

Since N' Iand M' 2 identical Farity, then

(NIN.)' .,'.t=1 , 1. I I, )

Rsult we check by transition to the decimal system

(7.13'ff(91)= 1054.91 =(I, 0. 0. 0)-- I. I. 1, 01 = 0, I, 1,)).

Example. NI=7, Nz=-1I. Let us write artificial form for thie

p r e s e t n u m b e r s V I(=0 0.0. 0) ( , 1.2,0) 0. 1.2,0) .

(1,0. 00, )-(I. 1, 3. 6) :(0. 2. 2. I).

Let is comiputt product N'141'z:
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NjN = (0, 1, 2, 0).(0, 2, 2, 1) =(0, 2. 4, 0).

In accordance with rule (1.14) (N1 N2 ) '=(O, 2, 4, 0). Checking gives

the following result:-

(7.(--3))=(-91)'= 105-91 = (1, 0, 0, 0)-(1, 1, 1, 0)= (0, 2. 4, 0).

Example. .4=-7, N2=- 13. Let us present the preset numbers n th'e

artificial fcrm
N, (1, 0, 0, 0)--(1, 1, 2, 0)--(0, 2. 3, 0).
Mv. ( 1, 0. 0. 0)--(1, 1, 3, 6) =(0, 2, 2, 1),

we dets rmine product N'N ':

N;N= (0, 2, 3, 0).(0, 2. 2, 1)=(0. 1, 1, 0).

of previously tae ?xample examined it is evident, that (0, 1, 1,

0)=(7.13) or, which is the same, (C, 1. 1, 0) =((-7)o (-13))'.

In the given examples were multiplied numbers of identical

pirity. Let us consider examples cf the multiplication of numbqrs of

liffrernt parity.

Examol. N Nz=17. Let is prosent the preset numbers in th!e

artificial formartifical for 0, 0, 0)-(0. c,1.6,=(I. 0, 1.' ,

N = (1, 0, 0, 0) -(1, , 2 )-(0, 2, 2, 3).

09 comFute prcduct N',N'a:

N'N; =(I, 0, 1. 6)(0. 2. 2. 3) (0, 0.2. 4).

Since N '1 and N' 1ifferert parity, then according to (1. I4)
(N,.%.J =(I, 0, 0.0), .0) 2. 4) - , .2. 41.
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Page 22.

By transition to the decimal system, we check
(6.1 ' =(102)'= 105+ 102 (I, 0, 0, 0)+(0, 0, 2, 4)=(, 0, 2, 4).

Examnple. NI=6, N 2=-17.

, Ni.=(1, 0, 0, 0)+(0, 0, I, 6)=t1, 0, 1, 6)
V , = (1, 0, 0, 0)-(i, 2, 2, 3)=(0, 1, 3, 4)

,jV ; = (1, 0, 1, 6).(0, 1, 3,4) (0, 0, 3, 3).

According to (1. 114) we have

(N(N1)'(], 0, 0, 0) --(0, 0, 3, 3)=(1, 0, 3, 3).

ChecKing by transiticn to the decimal system j..ves

(6.(- 17))'= (- 102)'= 105 -102= (1, 0, 0, 0) -(0, 0, 2, 4) = (1, 0, 3, 3).

The method presented the representations of negatIve numte:s and

operation/prccess with them assume that p,=2.

This is convenient from the pcint of view of simplicity of thr

execution of opazation/prccess, but it is certain limitation. :t can

ssem that in tna questicns, connected with the approximate executi-.-

of operations/processes ir the machine in the composition of the_

foundations for inexpediently having a oasis/base, equal to two.
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Ther fo r e it is necpssary to examin- th;. process of th= introtuct.c -

of negative numbers of mcre general character, without assuming

compulsorily in the compcsiticn of the bases/bases of number 2.

Lat thp basis of system te p,, p.,... p,, mcr~over p,=2t1. L-_t us

break down the range 3 = p~p... p, tc two parts: [ , - -) a.i _

Let furthe.r in thp adopted system number g2 take form

-- =(P, p). Let us accept as zero numoers 2 and wp will

reprisznt positive numbers N=IN i in the form.V =N -- , an," n.. iv

numbers N=-INI in the fcrm .v' ---.,V i.e. the general view of the
2

artificial form of a number will be

v 2 +V. (1.15)

The representation cf a ruaber in the form (1. 15) suhsu.r.tly

we will call the generalized artificial form cf a number.

Page 23.

Assuming that the result of cperation in the absolut, viua dz-s

not exceed ., it is possible tc perform the operations/proc sses

of additicn and subtracticn as fcllcws: assume it is necessary to

find the sum cf two numbers N , and N2, orqset in h'.-h artificial fern:

Ada
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let us add these numLers

N, + N _ = 2 __+ AX, N.

The artificial fom of the sum cf these numbers take.s the form

. ~~~~~( = \z'- - _.._.

Let us d;signatp hcqthrcuqh- * f # 1 (O -'

2~1 fii Pr

Pt=Pi-Pi, i=1, 2, .... n. Then

.,. (N,+N,)'=-,-N+ (p1 , p.. - . (i.I6)

It is easy to see that thp twc'sc ccmplemcent of nub!: N4 Js ob -inr4

by the subtraction of this number cf

2 = (PI, P". ... P.)"

In this case, i a number was nresat in the artificial form,

subtraction with the formatior/education cf tko's complement -ust is

carried out from

2 !- "-=(P-, P2-I ..

Let us give the exasples, which illustrate the addition of

numb.rs i. the artificial reoresntation accqti.d. The systm of oas=

takes the form:

pt=3, p2 =5, p3=7, p,=11.

,D-- 1 a 4d 2 I6Then ---. 577 = ( ., 2 , 3, 5)  an d ,3,4,6).

2L
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Example. N1=46, N_=81. Let us writ3 ths artificial fcrms of th.

components/terms/addends

N , 2, 3, 5)- ,! 0 , ,2 ? n "

-" N (1, 2, 3, 5)--(0, 1, 4, 4) (1, 3, 0. 9).J

Thean in acccr nca with (1. 16) wr cttain

(NI+Nz)'=(2, 3, 0, 7)+(1, 3, 0, 9)+(2, 3, 4. 6) =(2, 4. 4.0).

4e check by transition to the decimal system, that

(46+81)'=(127)'=577+127=(I, 2, 3, 5)+(1, 2, 1. 6)=(2, 4, 4. 0).
•4.

Page 24.

Example. N,=46, N2=-81.

N =(1, 2, 3, 5)- (1, I, 4. 2) =(2. 3, 0, 7),

N' (I. 2. 3. 5)-(0, 1. 4. 4) =(1, 1, 6, I),
(., -,V)' =(2, 3. 0, 7)-- (1, 1, 6. I) -(2, 3. 4, 6) =(2, 2, 3. 3).

By checking by transition to the decimal system we obtain

(46-81)'-=(-35)' =577-35 =(I, 2, 3, 5)-(2, 0, 0, 2) =(2, 2, 3, 3).

Example. ,41=-46, Nz=-81. By transition to the artificial form:

N; =(1. 2. 3. 5)- (1, 1. 4, 2) -- (0, 1, 6, 3),
Nj =(1, 2. 3, 5)--(0. 1, 4, 4) =(1, 1. 6, 1),

',,V , ' =(0, 1, 6, 3)+ (1, 1, 6, 1)+(2, 3, 4, 6)=(0, 0, 2, 10).

We carry out testing in thc decimal system

(-46-8' 1=(-27' =
-577-127 (1, 2, 3, 5) -(1, 2, 1, 6) =(0, 0, 2, 10).
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Lat us giv- the examples, which illustrate method presented

above of conducting the subtracticn.

Example. N1=116, N2 =E7. Wc ccnvert/transfsr tc the artificial

n form

N; = (1. 2, 3 5)- (2, 1, 4, 6) = (0, 3, 0, 0),
N; -(, 2, 3. 5)-' (0, 2, 3, 10)= (1, 4, 6, 4).

We for3 the two's complement cf the subtrahend N' ,:

(-N.)'- (2, 4.6, I0)-(1. 4, 6, 4) -=(1. 0,0, 6).

We cirry out adliticn according tc (1.16)

=(0, 3, 0, 0) +(1, 0. 0, 6) - (2, 3. 4. 6) = (0, 1, 1, .

* le check by traasiticn tc the decimal system, that

- ~~~(116-87)'=(29)'= 5,'7 - -29 =(1.2, 3, 5)-(2, 4,1I, D=(0,I, 4, I).

Example. N,=116, N2 =-97.

.,, -( .. , J. 5) 1-(. . 4. 6)h (0. 3, . 0),
N 1 - , 2, 3, 5)-(0, 2, 3. 10) =(1, 0, 0, 6).

Let 'is determin3 the two's complement of ths subtrahend

)(-N ' - (2. 4, 6, 10)-(1, 0,0,6) -(1, 4.6, 4)

is prcducsd ths additien
(v, A t, 3. 0. ',) .(1. 4, ., 4) -(2, 4, 6) _:(0, 0. 3, 10).
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We che:k in the decimal system, that

(!- 6-(-8 ) ( 3) 3577 3 5) + (2, 3, 0, 5) - (0, 0 3, 1)

Page 25.

" Exi mcle. N,=-116, Nz=87.

NV=(1, 2. 3, 5)-(2, 1, 4, 6) =(2, 1, 6, 10),
.V =(I,,2, 3, 5) +(0, 2,3, 10) =(1. 4.6, 41,

(-N 2)' =(2, 4, 6, 10)-(1, 4, 6, 4) =(I, 0. 0, 6),
(N -N?.)' =(2, 1, 6, 10)-+ (1, 0, 0, 6)- + (2, 3, 4, 6) (2, 4, 3,0).

We check in the decimal systew, that

(-116-87)'=(-203)'=577-20
=(1, 2, 3, 5)-(2, 3, 0, 5) =(2. 4, 3, 0).

Example. N,=-116, N 2=-87. We will use the results of the

previous axamplas
(.VI,- N2)' = (2, 1. 6, 10) + (1, 4, 6, 4) - (2, 3, 4, 6) - (2. 3, 2. 9).

Checking

(- !16-(--8' = (- 29') =577 -29-

=(, 2, 3, 5)- (2, 4. 1, 7)= (2, 3, 2, 9).

Let us examine the executicn of the operation/process of

multiplication !uring the representation cf multipliers in ths

generalized artificial fcrm.
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NJD2 +Vand +1 ~ N 2 ,

then

After desigrating

4 we will obtain.

5'v ( P +.~v-

whence

Assuming/setting

* (by recording in the curly braces is indicated fractional part of th:

division * into two) ,we will obtain

(N1NA(-. 2 + NN [ ) -2{ -}: z

Page 26. if 0 is even, than ['*012) =0/2 and [ 012 )=0, then

(NN)y = -N2 + N,2 + 1.9
2
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Let us introduce value t, determined as follows:

( eCAH p eTHoe,

2 . , ec.ui q He4eTHoe.

Key: (1). if 0 even. (2). if o cdd.

Then expressions (1.18) and (1. 19) are transfcrmed into the

following:

(NIN 2)' - t. (1.20)

V-alue $ it is expodiont to select expressed through the

artificial forms of cofactors, i.e.,

N +N.'+-(1.21)

Lat us examine some examples, which illustrate the execution of

the operation/process of the iultiplication when numbers arp

represented in the artificial fcru.

Example. N,=23, N2=19. We convert/transfer to the artificial

forms of the cofactors

N,= (1, 9, 3, 5)+(2, 3, 2, 1)=(0, 0, 5, 6),
N,=(1, 2, 3, 5)+(1, 4, 5, 8) =(2, 1, 1, 2).
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Lat US ccmputZ value f according to (1.21):

(2 2, 5, 7),

(N1N2y'=(I , 2, 3, 5) +(0, 0, 5, 6).(2. 1, 1, 2)- (2, 2, 5, 7)
, 23, 5)+ (0, 0, 5, 1) (2, 2, 5. 7) , 46, 2).

we carry out testing in the decimal system

(23 -19)' (437)'=577 +437 (1, 2, 3, 5) (2, 2, 3, 8)=(0, 4, 6, 2)

Page 27.

Example. N 1=23, N_,=-19. Let us compute the artificial forms of

the cofactors

N,= (1, 2, 3, 5)+--(2, 3, 29 1) =(0, 0. 5, 6),

let us determine 0:

qp=(0, 0, 5, 6) +(0, 3, 5, 8) +(29 39,4, 6) -=(2, 1, 0, 9),

hence

We compute product on (1.20)

We check by triasition to the decimal system, that

(23.(- 19)-(- 437)'= =7 3
=(1, 2, 3, 5) (2, 2, 3, 8)=(2, 0, 0, 8).
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Example. N,=-22, N,=19. ke ccnvert/transfer to the art4fi::al

foLms of the cofactors

N -(1, 2, 3, 5)-(, 2, 1, 0)=(0, 0,2, 5).
,v ; (, 2, 3, 5) + (, 4, 5, 8) =(2, 1, 1, 2).

We compute 0:

q 0=-- , 0, 2, 5) + (2, 1, 1, 2) (2, 3, 4, 6). (1, 4, 0. 2),

~hsnce
-= =(2, 2, 0,
2 .2,0.).

we computs product in acccrdarce with (1.20)

(h ' -(1, 2, 3, 5)+(0, 0, 2, 5).(2. 1, 1, 2) +(2, 2, 0, 1) =(0. 4,5, 5).

we carry out testing in the deciral system

((-22). 9)1 (-418)'- =577- 418 =
=( 2, 3. 5)-(1. 3, 5, ) =(0, 4, 5, 5).

Examiple. N,=-22, N2 =-19. we comput3 0, utilizing the artificial

forms Cf ccfact3rs, determined in th-i previcus examples:

= (0, 0, 2. 5)+ (0, 3, 5, 8)- (2, 3. 4. 6) =(2, 1, 4, 8).

V hence
t =.- =(1, 3, 2, 4).

2

Le.t us compute the product

(VvN2)'=(1, 2, 3, 5)+(0, 0, 2. 5).(0, 3, 5, 8)-- (1. 3, 2. 4)=(2. 0, 1, 5).

4e che::k by tra.siticn to the decimal system, that

((- (-19))' =(418)' =577+418=

-(1, 2, 3, 5)+ (1, 3, 5, 0) (2, 0, 1, 5).

Page 23.
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§ 1.5. !ulti-stige system of residual classes.

on of the essential advantaces of the system of residual

classes i's th possib.4lity of the raralle! prcc-ssin) cf thc '.is

which are remaindqrs/r-siducs alcng the adoptea sys-:em of nas'/na

Pt. p2, . p,,. Since in this case the range of th-3 represontation of

numbers J is iifinod as the rcduct of +he basias/oases

.~~~PP .., =p p n • p,

tnon it is lcgi:al that t'a ranqg of th'a rapres~ntaion of r, bjr_-Z

increases considerably mor. rdpid than the word format, necessa.-v for

the representation of a number, characterized by the sum of th

digits, necessary for the representation of remaindnrs/resi-duas

according to th. salccted bases/basqs.

The rquirament of mutual simplicity of tases/bascs dc.s nct

make it possible: to select ther clustered in the small section of

the series/row of natural numbers. hus, for instance, one of the

possible systems of bases/bases, which realizes the numerical :ang-

of order Tz loll. will be such 3, 5, 7, 11, 13, 17, 19, 23, 29, 31,

37, 41, 43, 47.

It is easy to see that fcr storing the remaind-rs/residus.s or
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these bases/oases will te rfquired i.e binary re'jis: rs wi-: 7i-

iischarqe/digital configuratic with respect 2, 3, 3, 4, 4, 5, 5, %,

5, 5, 6, 6, 6, 6.

nn the six-bit r~gistars can ba store! the :emaind-rs/res-i]s

on thr.s morft bisas/bases of thp same s-riis/rod, na.aely Cn

bases/bases 53, 59, 61 which will increase ranje to the valies of

orier 1022. For further increase cf range will be rqeiuired th:.

transition to t.e seven-d±git registers.

Possibly, che system of bases/bases indicated is not optimum,

but it, just as any other, it is reflected/reprasentad natural

tendency toward an increase it the discharge/dijital configura:ion :f

reqisters with in increase in t e numerical range. An increase in zh7

discharge/digitil zonfiguraticr of the registers, which store t-!i

remainders/residues of ruffbers cf the examined range, respectivelv

leads to the complicaticn of the equipment for arithmetic unit anl an

increase in the operation time.

T.ndqncy as far as pcssible to decrease th -. value of basqs/bas

led to the thought to construct the system of residual classes into

several steps/stages.

The principal system of the fcundations for eating pt, 2. p,
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an! tl-isS YStrt of blsks/,Cases rCV!.,iS t I-- -. c" zl) .ti ':

executicn of: operat-io rs/[rccesses In Fr~sc-t ! ;a 0. 4- 1.,

Page 24.

multipliJcat-cn of sin;rl-0 1ii.its, ex-,sts ip.,

4z will n: w :rc'rs-nt all ii ::ct'.. .-- :7s

system with tas~s/baszs 7:. . zi sih, '-

/ 1A

In this system th- maximum nb~r w.14cft car. --r oa::.- : t.

multi plicati&on of its lioits, w-411 be numbhz (.t I is i: L

in turn, trqese Last filuroas (in systc-i :10 tc wzE:

1h'p systa m wjtn zas, s/bases Pi, P2, . p n1er cr'. i-, ic:-

-- . p. .> - 1 arni sc -1crtr

This process of transiticn tc -hq s malle r oas-es/Loasos za:

simplif ias the reilizat icn cf elementary aritbmatic un-, an2s

shcrtered the time of the executicn cf arithmetic oparaticr.

A-ztually/r3all y, for tno% s ystem vit.h ran je -TJf 1 7p 'te t

basis/base is P,, 47.



r a ir/- ,a- is Int e nlei *c detorni ne, it z an D =b~2 1 1 . 7~3

t r se :on! step~/sti e c f thie by st. c- of c es~ia a c I sse6 :visr r- ;cn

J7:! z a: s abcv4 c,' baszs/b as es, JIt is LSj -

:7 a f t~ cccn I sl -:/st a j- t ort th rEa-:est baFJ-

IS I~ It :7 e e St t a EI S/': Se I mat 13

c~ta ra r ambpr w2A.. t, 1=.. 1 It :s c iica I -- :- or t nP

:e i z:c C n r r. 5ste: ' a il r '-ir'! tnl: 'Jl~s j-

s~P sebs/ow in re !:elect~c svs4- SYL dses/bases 3, . .

7 )9 ' I.., real-zi* or c: ross.zle )Deri:o!.s 'c~-a*;s as

in~ -)ord tn/tj J ~ eur sc-s /Daszi j,~

s _ _ , isfu tn - s- -t thi i i * *i
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numb ar of mutuIlly simple r-asons, w4l! seem that thl. maxi1,rr nlimb-:,

capable of arising in the process cf executing the operation/preCess,

is equal (to 7-1)2=36, and the new systa m of mutually simple-

bases/bases it ran be selected only frcm series/rcw 2, 3, 4, 5, -,

which 4s impcssiblq.

Page 30.

Thus, from the initial system of bases/bases with g:-atzest basis/b!.s-
P,=47 it is possible tc cross three steps/stags to t:. syst;n of

bases/bases with the greatest basis/base, equal to 7, thanKs to wic-

is proviled a decrease cf redurdarcy in thi tables cf arithmetic

operations and an increase cf t~e high speed cf the latter.

Arithmetic unit in this case in will work only in the highest

step/stage and only in thq stages of deduction of result thq c:tai ..

numbers must be converted intc the form, most opeferable for the

output/yield.

Shouli be focused attention on the circumstance that in 7enk-r

we win in the redundancy one elementary arithmetic unit: however,

with eich incr.ase in the step/stage of bases/bases we los- in th:

redundincy of gntiro arithm-tic unit due to an :ncrease in th-i

discharge/ligital configuraticn cf 4ntire number and du; to an

incr-ase in the redundancy upcn transfer to the new stcrn/stei]^.
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Let us examina some P%-.amles, which illustrattb multiJ.evsl

systems.

Fir the on-erat4 on wJ th numbers 'rom 1 to 103 snould be z-

the Svst, m cf bases/bases, in which would be repres~nted n':0 ers rx

1 to 106. It is possibli to accept the systrzm of th-i bases/tases:

pj=11, p2= 13 , p3= 17 , p4=20, p5 2 1.

HIre Y =PP=IOI5120> 106.

With the cpe3rations/ processes with the digits in this sytma

maximally possible result 2Oe20=400.

W-i will each of the digits rc-Fresant in th - system witrn th-

bases/basgs:

R a n g e o f t h i s s y s t e m t n n , = 6 -4 5 7 = 2 0

The greatest possibli result in this systam will b- def naei -as

(7-1) 2=36, while- in thfa first system of basps/bases the jrpat,3st

pcssible result was equal to 40OC, i.14., here elemnentary arit!hne,1iz

unit operates with numbers, 10 times less in th-? value.
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Example. Assume we should conduct ,nultiplication 115-541. L : us

write ccfactors in th- principal system of bases/bases (f-rst s-agf)

115= (5, 11, 13, 15, 10); 541 =(2, 8, 14, 1, 16).

Lat us writa now these numbers in the system of the bases/tases

of the following (second) stF/s tage:

115=[(2, , 0, 5); (2, 3, 1, 4); (1, 1, 3, 6); (0, 3, 0, ); (1. 2, 0, 3)],
541 =(2, 2, 2, 2); (2, 0, 3, 1); (2, 2, 4, 0); (, 1, , 1); (, 0, 1, 2)J.

Let us produce multiplication in the second step/stage

115.541 = [(1, 2, 0, 3); (1, 0, 3, 4); (2, 2, 2, 0); (0, 3, 0, 1); (I, 0, 0, 6)1.

Page 31.

Let us examine how appears the obtained result in first sta j:

115.541 =(I0, 88, 182, 15, 160).

Operations/processes in the Icwest system will always

correct, if tzue result dces not lmave the range of thp

representation of numbers cf series step/stage. In this case also

must not have point of emergerce frcm the range of the representation

of numbers and in the lcwest step/stage.

Returning to the result of th- multiplication conducted, !'t us

lead it to the smallest pcsitive remainders/residues along th-

selected system of the bases/bases

115.541 =(00, 10, 12, 15, 13) -62215.

Exampl. Compute u 12. Let us orite numoer 41 in the rirst
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system cf the bisas/bas.s

41 =(8, 2,7, 1, 20).

Let us pass to the second step/stage

41 = [(2, 0, 3, 1); (2, 2, 2, 2); (1, .3, 2.0); (1, 1, 1, 1); (2, 0, 0, 6)1.

Let us elvatr 41 into thp squar- in thz second st--./stage
" 412 = [(I, 0, 4, 1); (1, 4, 4, 4); (1, 1, 4. 0); (1, 1, 1, 1); (1, 0. o. i)].

Lpt us rastore/reduc-. rqsult in first stagg

412 1 (64, 4, 49, 1, 400)

and let is lqad it to the smallest positive remainders/residues in

first stale

412 (9, 4, 15, 1, 1,)= 1681.

§ 1.6. Rational operaticns/procsses in tha system of residual

classes.

Above it was established/installed, that the

cperaticns/procasses of addition and multiplicaticn on the nubs.rs,

represented in the system of residual classes, are reduced to the

appropriate opprations/proc.ssps above the digits of this

representation. This prcves tc be valid also for any complex

operations/processes, ccmprised cf the operations/processes of

addition and multiplicaticn. Sole limitition in the fulfillment nf

this typ. of complicated cperations/processes is the r:.quirimnt -f

nonappearance beyond tho limits cf range, determined by the basis cf

-A&|
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systarm accoptel both final, and intermediate results. With sc'a

refined rules of the fulfillment cf complicated oFerations/proc-sss

it proves to be possible to be lisited by the requirement of

nonappearance from the range cnly ef final result, leaving af .r th-

intermediate results the ossibility to exceed the limits of range.

Page 32.

It is obvious that t+e atcresaid rqlates also to the calculaticn

of the values of polynomial.

Let be given polyncmial Q(x):

Q (x)= axt,
i-O

whers
a = (aji), . . ));

xi= (.xV, XQ ...

coefficients ani the degree of basing of polynomial, presented in t -s

systc~m of residual classes on bases/bases PL, IP2, P.. p..t &4S

designate through Qj (x) the expression

Qj (xfl otOV

Then in accordance with the rules of addition and multlicaticn

in the system of the rosidual classes
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i.= I . "' , .Q (x) = ( o .. ;i ));
i-O i=O i=O

=(Q , (X ,), Q . (X ) . .. . ,(X ,.)). (1.22)

The components of pclyncuials are written/recorded taking into

acccun- signs in the artificial fcrm.

For th6 illustration let us examine soma examples. In 1_h is

examples is accepted the system of the bases/bases: p,= 2 , p2=3, P=5

p , 7.

Example. Compute exFrsssion AB+C with A=4, 3=5, C=-3.

Lit us write the preset numbers in the artificial form:

A'=(1, 0, 0, 0) + (0, 1, 4, 4)=(1, 1, 4, 4)
B' =(1, 0, 0, 0)+(1, 2, 0, 5) =(0, 2, 0, 5),
C'=(1, 0, 0, 0)-(1, 0, 3, 3) (0, 0, 2, 4).

We comput, exprassion AI'E'+C':

A'-.B'+ C' = (, 1, 4, 4).-(0. 2, 0. 5) +(0. 0, 2, 4) (0, 2, 2, 3).

Let us perform testing in the decimal system

(4.-5 -3)' = (17)' 105 - 17 =(1, 0, 0, 0) -(1, 2. 2, 3) =(0, 2, 2, 3).

Example. Zompute expression AB+C with A=5, B=-3, C=4.

Lzt us lai the preset numters to the artificial fcrm:
A'=(1, 0. 0. 0)--(1, 2, 0,5) =(0. 2. 0, 5),
B'=(1, 0, 0, 0)-(1, 0, 3, 3) =(0, 0, 2, 4),

C' =(l, 0, 0, 0)+(0, 1, 4, 4)=(, 91, 4, 4).



ii

DOC = 81023902 PAGE

Page 33.

We compute o xpr ssicn A'*E'+C':

A'.B'+ C'=(0, 2, 0, 5)(0, 0, 2, 4) -- (l, 1, 4, 4)--(1, 0, 0, U)=
=(1, 1, 4, 3)+(1, 0, 0, 0)= (0, 1, 4, 3).

We ch-ck in ths decimal system, that

(.(--3)e4)'=(-l1)'= 105-11-

=(1, 0, 0, 0)- (1, 2, 1,. 4) = (0, 1, 4. 3).

Example. Compute expression (A-B)C with A=17, B=7, C=5.

Let us write the preset numters in the artificial form:

A'= (1, 0, 0, 0)-.- (I, 2, 2, 3) (0, 2, 2, 3),
B' (1, 0, 0, 0) (1, 1, 2, 0) . o. 0 , 2. C- - B'

-(2, 3, 5, 7)- (0, 1, 2, 0) - (0, 2, 1, 0).
C'= (1, 0, 0, 0) .-1-(1, 2, 0, 5) =(0, 2, 0, 5).

We compute expression (A'-B') C':

(A'-B')C'=((0, 2, 2, 3)+(0, 2, 3, 0)-- (1, 0, 0, 0))(0, 2. 0. 3)-
(1, 0,0 0 )=(1, 1, 0, 3) (0, 2, 0, s)-t1, 0, 0. 0)= (1. 2, 0, 1).

Wa carry out testing in the decimal system

(J17-7).5)'=(50)'=105+50=(1, 0, 0, 0)-(0, 2, 0, 1)=(1, 2, 0, I).

Example. C3mpute the value of polynomial Q(x)11xz-7x+ with
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x=3.

Let us write Q(x) with the ccetficients represented in the

Q'(x) (0, 2,!1, 4) X2- (0, 2, 3, 0) x -(1, 2. 3, 1).
X'=(1, 0, 0. 0) -(1, 0, 3, 3) =(0, 0, 3,3).

We compute values QiA(x,), where x, - remainder/residus on basis.'bas=

Q,(X)=0.0'+0.0+I =1,
* Q2 (x2)=2.0'-4-2.04-2=2,

Q3(X 3)=13+33- 3 = 1,

Q4 (XO =4.3--03 -I =2.

Hence
Q' (x') =(I, 2, 1, 2).

;iq check in thr- decimal system

(Q(3)'= 105+Q (3)= 05 L- 86 =(1, 0, 0. 0)--(0. 2. 1, 2) (1. 2. 1. 21

§ 1.7. Translation of numb~ers of the positional system into the

system of residual classes and vice versa.

The translaticn/conve*rsicr of number ?4 from tha. positicnal

system into the system cf residual classes can be realized with t'-=

aid of th- set of the co!!stants, which are the aquival3nts cf 1 jree

p (basis of posiJtional system) in the system cf residual class-es.
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L-t number N be preset in the Fositional numeration system ditr

basis/base p

N =apra,-i"- + + a,p +ao

or
V aip' (1.23)

HerR a4  onr.r of the numb4ers 0, 1, 2, p., -1 and let

pi=(P), 00), o.,~)Pr j1, 2, .. ,r

-be the representations cf degrees of p in the system :)f resilai

classas with bases/bases Pt, P2, p,, ank- value

at=- (a(') 4m"), *** a ) f cr 1~, 2 .

-rsores, ntation of the coefficients of polyncmial (1.23) ir :

system cf residual classes. Than in acco)rdance withi (1. 22) .tis

possibls to easily form number N in the system of residual class'-s.

After designating

Qj 2: CCP
t-0

we will obtain

N = (Qj, Q2, Q . ), (1.24)

i.e. for formin; the numbqr N in the system of rqsidua. class -s it i.s

reauiraed knowledge r Cf the ccnstants, which are degrees cf p in I L)1
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constants of aporopriate for Fossible valu;s a, i._. in all r n

constants. This path is simpler than direct irdexing N into each

basis/base and formatic/educatior cf rsmainder/residue, as this

ascape/-nsues from thp determination of system. It can be. zaalizpd ;n

the presence of th- arithmetic urit, which wor~s in thz sys-.n -f

resilual classe-s.

Example. To translate number 102 of the decimal system into th-

system of residual classeE with tt'e bases/bases: p,=3, p,=5, p3=7.

,Let us extract constants:

P') = I,1 1), P I 10=(1,O0, 3), p2 =10 = 1 0, 2);
u,, 2 =-(2, ', ). a, = = O u ) ) : (,1 )

then in accordance with (1.24)

IuZ =a2 I 1 - 0l1--1,2-- - 0 1. 0, 2.1-1-0.3-t- .2)=(0,2,4).

Page 35.

Possible if does not limit storage, to have a set of constants

of the values of products ajpi (4=G, 1, ... , p-1) in the syst-em of

residual classes.

tb then number N is formed simply by tha additions of the

corresponding constants.
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Calculation N can also be conductei accord-ng to the dia ri. x:

Horner for the polyncmial.

Let us .xamin ncw translation algorithm from the system of

residual classes into tie positicral system.

Lest the basis of the system cf residual classes be p,,

Pz,.... Pn Let us assign n of numbers B1, B. B, in the system of
4,

the residual classes

B j (l~ jj , P (, ....

= 1, 2, ... , n,

which subsequently we will call the basis of system. As it will be

evidc.ntly further, the bases cf system are its basic ccnstants. Th=-ir

values are defined simultaneously with the selection o, systom and

are known to us both in the systei cf rasilual classas and in -

positional numeration system.

Let for tha translation/conversion into the positional system b,

is preset number A in the form
A = (o4, a;,..,=)

The goal of translaticn/convqrsion consists in determining of

numbers ,, , .. ,C such, tnat

tiI -r 2 -1 .. --7- n = A. (1.25)

Let us rewrite (1.25) in the system of the residual classes
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ILI +p" R,2 W,,) P2 .(1),..

+ L.. .. .. ..... , ...... ... ,......a.

Equalizing corresponding remainders/rasidur.s, wi obtair. t h-

system of linsiz algebraic equaticns for determi ring the vaulus

R1 , =a,,

RI, + R202) -+ (1.26)
.,., . ... . ..,.+... , ,"  ..

, Page 36.

Systnm (1.26) will have the whole soluticns, if the det!?rmtnant

of system is equal to +-4, i. .,

) . . = 1, (1.27)

p) 2,. n)

Thern is a large selecticn of valuEs P, ... since any

system of values A(9) is acceptable as the remainders/residums of

bases, if it satisfies ccnditicr (1.27).

In the particular case as the bases of system can be selsc.ad

the following values

BI=(1, 0, 0,... 0), B2 = (0, 1, 0 ... o).
B,,=(0, 0, .. . 1), (1.28)
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which it is logical to call the crthogonal bases of system. In

accordince with (1.26) fcr the crthcgon,l bases we ottain

t4 = i fcr i 1, 2, n, (1.29)

wh, nce

Aa, Bt+%B 2 ... + cBB (mode). (1.30)

4 For thsp basis the dqtpzminant of left side tak-s the fc.n

i00 ... o
010 ... 0 _ .

000 ... I

Let us examine an example cf the use/application of crtrc;cInal

bases for the trarslaticn/conversicn from the system of resi'ii.i

classes wi.th basss/bases o,=3, F2=5, p3=7 intc the Iecimal svst:n.

Example. To translate number A=(2, 3, 5) into the d-cima!

system.

L3t us extract the c::hoacnal tases:

BI =(1, 0, 0) =70, B2 =(0, 1, 0) =21, B3 =(0, 0. 1) =15.

On th% basis (1.30) it is Fossible to writeb

A - (2. 3. ,5) --2B , -3 B - 5 B3 2 70 -3. 21 - 5.15 = 278 .
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sutrcto Co:alue, :-.utpc a n I f ' na w i tbe aa~ -

A 2 . 278 -2 1 U5 = 68.

23,49 37.

f orm

B f cr i 1. 2. .n

4 Pf

lwhprq mi. - hcla pcsiti- ye number which let 'is :'a-e/call tne W'?4.4r't~

* orthcgona basis.

Mlotiove r mi 3ust ba selected in such a way th.at wculd ccci: t

following comparison

or n-

IP

where .1, - positive integEr number.

L~t us poinit Duxt, how it is expedient to comipute value i. L-- us

introduce desigaation cT= .lopt us cOMout!? 'in~- divi ' Oi n.1
P1 0
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p,. 3inc- P, of thie muitiplicers of mutually Simple onss with P,, -h;;-:

1, it will nct be zomprised ccmletsly dividod Into p , as a rasul> cf

division we. will obtain certain remaindar/residue which let us

iesignate through 6j. 1rhen in accordance with (1. 31) m, is lefin;Ld as

the sclution of tha cc. rariscn
mn,6i - I (mod p,). (1.32)

In view of a cciiparativ- smalinos- cf values cf oases/bascs fo: s t

A it is possible to make table of the soluticns of compariscns

(1.32), in which through value 6i is located appropriate m:. Assi,-.ini

that thr Dasis zf systew arc takqr by simpl, cnes, let us g.!v: th-

tabl.s of the solutions cf corpariscn (1.32) for the prima nrmb.-s in

the range 26.

in this table for .ach criie number in the range 1-2 6 are giver

m,, thcsc. ccrresponiir.g tc all rcssitle ones 6.

For the ch-ck of the calculation of orthogonal bases it 4-s

possible to use the relaticns'ir/ratic, obtained from (1.2.9):

B1+B±...+B,=(I, 0 .... 0. '(0, I.

-(0, 0.1)=(0, I. )=l.

Since the opsraticn is carried out in the syst,?m with :an.jz

OO ), the control relaticnship/ratic can be written as

nB 1 (mod d). (1.33)

.~~ .... .......
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Page 38.

Table of the soluticns cf compariscn (1. 32).

S23 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 ol

2 2 3 4 6 9 10 12 15 16 19 21 22 24 2-1 .30 31
3 2 5 4 9 6 13 8 10 21 25 14 29 16 18 20 41
4 4 2 3 10 13 5 6 22 8 28 31 11 12 40 15 46
5 3 9 7 4 14 6 25 15 33 26 19 32 12 49
6 6 2 11 3 16 4 5 26 31 7 36 8 9 10 51

8 2 5 11 10 25 9 16 6 37 27 38 17 35
8 7 5 15 12 3 11 4 14 36 27 6 20 37 23
95 3 2 17 18 13 7 33 32 24 21 6 46 34
10 10 4 12 2 7 3 2 26 37 13 33 16 6 55
I 6 14 7 21 8 17 27 15 4 30 29 43 50
I 2 12 10 8 2 17 13 24 24 18 4 31 5 56
13 4 3 16 9 12 20 19 10 29 49 50 47

"14 11 15 5 27 20 8 3 40 37 19 38 48
15 8 14 20 2 29 5 11 23 22 46 4 57
16 16 6 13 20 2 7 18 35 3 10 48 42
17 9 19 12 11 24 29 38 36 25 7 18
18 18 9 21 19 35 16 12 34 3 23 17
19 17 26 18 2 13 34 5 14 28 45
20 15 16 14 13 39 28 40 8 3 58
21 11 18 3 30 2 41 9 48 45 32
22 22 4 24 32 28 2 15 41 51 25
23 24 27 29 25 15 45 30 18 8
-4 23 22 17 12 9 2 42 32 28

25 7 5 3 23 31 32 17 26 22
26 19 6 10 30 5 38 51 25 54
27 14 23 11 38 8 7 2 35 52
28 28 10 4 22 20 42 36 19 24
29 15 23 17 3 13 11 57 40
7) 30 21 26 33 11 23 2 59
316 4 25 44 12 40 2
32 22 9 39 25 5 24 21
33 9 5 30 10 45 34 37
34 12 35 19 18 39 33 9
35 18 34 16 43 50 27 7
36 36 8 6 17 28 41 39
37 10 7 14 43 8 ,33
'a 27 17 26 7 14 53
19 20 32 41 34 56 36
40 40 40 20 4 31 29
41 21 39 22 36 3
42 42 28 24 52 16
4:3 35 27 II 44
44 31 47 55 43
.43 23 33 21 19
46 46 15 9 4
47 44 54 13
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K 5359 61

48 21 16 14
*49 13 53 5
50 35 13 II
51 26 22 6
52 52 42 27
53 49 38
54 47 26
55 44 l0
56 56 12
57 29 15
58 58 20
59 30
60 60

Page 39.

L -t us examine exawples cf the calculaticn of orthogonal baszs,

utilizing data from the tabla.

Example. Let be given the system of the tases/bas-s:

pt=3, P2= 5 , p3=7. p,= 17. 4 =p tpoap4 = 1785.

we compute:

-= 5.7.17=595. -t -- 3.37.17 =357,Pt P2

-- =3.5.17 = 255, -t =3.5.7= 105.
p3 P4

We compute now:

595 3578 j-= -(mod3)=1, o2= L: (mod 5) 2,
25 105

63 - (mod 7)=3. 6, = .- (mod 17)= 3.
7 17

Through the table we find: it=1, m2 =3, M3=5, m,=6. Thus,

B, = 1.595=595, B2=357.3= 1071.

B3 =5.255=1275, B,=6.105=630.
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we check against the contrcl relationshiF/ratiO

B + B2 + B3 + Bi=595+ 1071 +1275± 630= 3571;
3571-2.1785= 1.
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Chapter 2.

Theoretical-numerical bases of the system of residual classas.

§2.1. Elements/cells of the thecry cf comparisons.

The basic theoretical-numerical basis of the system of residlal

classes is the theory Cf compariscns. Questions of the theory off

comparisons were worked cut by cutstanding Russian Scientific P. L.

Chebyshev and presented in his classical work "Theory of

comparisons". Following in essence F. L. Chsbyshev's prrsenation,

will be examined below sofe questicns of the thqory of compariscns,

necessary for the development of the system of residual classes, and

also some methois of executing the arithmetic operations, which ars

based on the use/applicaticn cf thecry of primitive roots and

indices.

Dat'.rmination. For integers e and b are conjru4nt betweer
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themselves in mndulus/module F, if their difference a-b is ultili z)

(it is divided completely into p) , i.e., a-b=tp, where. - intsg-r.

IFor the ccmoarison is accepted the designation

• a = b (rood p). (2.1l)

Comparison can Le treated as equality on the modlus/moaul. This

makes sensp, sizce th- ccmpariscns poss-ss many properties, inh-rgnt

in equalities. Let us enumerate these properties.

Page 41.

Property 1. If a, b, c and p - int3gers, then from the

c or pa ri-sons
a c pn c (mod p) r4M. b c (mod p)

it fcllcws that also

a = b (mod p), (2.2)

i.e. two numbers, congruent with the thi.rd in certain mod'lus/odul=,

are congruent between theaselvas in the same modulus/module.

Aztually/raally, regarding tho comparison

a= 1 p-f-tc H b=12p-c,

wher_ 11 and 2 - integers.

f'-r e.xcluding c cf both equalitias, we will oDtain

a (t - 12) p-b,
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whence it ensuas/escapas/flcws cut (2.2).

Property 2. In the comparisons, just as in the equalities, it is

possiblo to trnsfsr terms c. one part into another without thi

"[& disturbance/breakdcwn of compariscn.

Let occur the comparison

a1+a+...+am-bt - bz+- . b,(odp).

Regarding this indicates the presence of the equality

*at+a 2+...+a,=kp+bi+bz+--... +bn.

Equality will not be brckqn, if we transfer of one part of . irto

another, taking into acccount signs, any quantity of terms. Let we

transfer from the left side c the equality members a,, 42, -. ,a 5

intc the right, ard from the right ,, b2. into the !eft.

Then it is possible to rewrite equality in the form
a., •• -.. a,-- b - -. .bt

-- kp+bt+it4-... +bn-- ... .. ,

Passing from tha equality to the comparison, let us write

b, +...+bft-a,-- ... -a.(odp),

that also shows the validity of the formulated property. In

particular, if
a-b(modp), TO H b-a(modp).
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Property 3.

a,-b(modp) H a, -b z (modpl.

Page 42.

Then occur and the comparisons

at - -a2  b, + b2 (mod p), (2.3)
a, - a- bi - b (Mod A

i.e. compariscns on cr. and the same molulus/module can b- pincrCmE-al

stored/added up and subtracted.

The actually/really preset cc¢parisons can be rewritten in thne

form of the equalities

at = kip + bi CArnd a2 = k2p + b-2

by storing/adding up and by subtracting piecemeal these equali-ies,

we will obtain a,+a2=(k.._k)P-b+b,

a, - a2 = (k, - k2) p 4- b, - b2.

After switching over frcm the aqualities to the appzopriate

comparisons, we will obtain (2. 3) . This property applies to any

quantity of comparisons.

Let us givi the illustrating example.

Eximple. From the compariscns 77-5 (mod 8), 3614 (mod 8) by

trm-by-term addition - sub~racticn wa obtain the comDarisors

774-36 M 5- -4 (mod 8). T. e. 113 - 9(mod8) Qf\c"

77-36 - 5-4 (mod 8), r. e. 41 M-I (mod8).
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valiiitv cf whi~h -.s casily set by testi n g.

Preparty 4. If takes the place

a =_b (mod p)

and r - int'-ger, then

ar =_br (mod p), (2.4)

i.e. the members of comparison can be multiplied by one and th: S~l

i r.teg er.

A4ua1.ly/r:;ally, the first cemparison is cquival,.nt to

equalit y

a = kp -6.

After multiplying both parts cf this equality to r, we will ottain

thca qquality

ar krp --br =Kp br,
v he rt K =k

which is aguivaleflt (2. 4).

Pago- 43.

Let us illustrate this property by an example.

Fxample. JCurs Comuparison. 47=-3 (mod 1 1). lultiplicard arm ,)cl:,i
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parts Df it to 17. 4,e will obtain 79qg51 (!nod 11). 3y t-st-.: j

establish that 799-51=748 is divided by 11.

Property 5.

a, b, (mod p); a -b- (mod p);. a, b. (mod p).

Then
aaZ ...a - bb ...b, (mod p.), (2.)

i.e. comparisons on one and the same modulus/moiule can Dlece.

multipliad to each other.

Actually/raally, let us register the comparisons as of s i: rho

equalitieis
a,=k,p--bt; a2 =kzplb.;...; a. =i,p-b,.

Multiplying piecemeal these squalities, we will obtain the zq*ialiy

ata.. . .a, = k,k2 ...iksp3+ (kjk.,... ,_$b, -

ktlkt. • •k,-zkt,b,-i + . . . "r ltzk.3. ••ksbj) p"-

••• _(Ikbzb3 ... b, - k,bl ,  ,b, -. ..

"+ k b b2. •b -) p - b1 b2 . .b,

which is equivalent (2. 5)

Property 6. Let be given the polynomial

f(x) = g,,x" + g,,_,x 't .. g,,- -go

with the whole coefficients and let a be is ccngruent with b in

modulus/module p. Ther
1(a) m f (b) (mod p), (2.6)
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i.e. th valups cf Polyrctial with the whole cozfficicnts f:cm :wc

drguments, congruent in ce.rtain mcdulus/module, are congruent batwa-n

themselves in the seme mcdulus/Todulp.

This prcp-rty is s .t cn the basis :f the use of the previous

prcp,2rti4s of ccImpriscr.s.

Lat us giv3 the illustrating example.

4.

Example. L=t bE given the rclyromial

f(x) -=7xA 12x 3 - 23x 2 - lx- 10

and let it he it is given 22=7 (mcd 5). Let us find the values cf

polynomial with x=2 and x=7

1(22) 1 1 788 952 1 (7) 22 137.

Let is compute the .ifference

,(22)- (7 I 78,S 32- 2 137 -1 766S .

It is easy to see that this difference is divided by 5, i.e.

f (22) f(7) (mod 5).

Page4.

Property 7. Let occur the comparison

ac- bc (.oe p),

moreover c is mutually simple with p. Then is p:.rformed th=

Comris .o n M - b (rood p),

LL.
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i.e. the members of comparison can te abbreviated/reduced to their

ccmmcn factor, if the latter is mutually simple with thn

molulus/module. Initial ccmcarison is equivalent to the equality

ac = kp + bc.

Since the left side of the equality is mulIiple c, thin right i

also milst be multiple c. with P ard c mtitually simpl _ must be

multiple c i.e.

~k=lc,

then ac = cp + bc.

After shortening both parts cf this equality to c, we will obtain

a = Ip + b,
1.e.

a -- b (mod p).

Example. Frcm thp coapariscn 374=77 (mod 9) it follows, aft.-

decrease to 11, 34Z7 (mcd 9), i.e., difference 34-7=27 is iivid-I by

9.

a

Property 8. Let occur the comparison

ac m be (mod pc).

Thor takes the place a-b(modp),
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i.e. the comparison, t-rms and mcdulus/module of which ihav ccmmor

factor, it can oe abbreviated/reduced to this multiplier.

Actually/really, after writing the equivalent to initial comparison

equality c=kcp+bc.

and shcrtpnirg it or. c, we will ctain

a = b (mod p).

L:t us give the illustrating example.

Exampl. From th- ccmpar4scn 87-=3 (nc1 21), by :h4 dec:~as c

its terms and modulus/mcdule tc 3, %e obtain comcarison 2.9=1 (m.:d 7)

valid, since 29-1=23 it is divided by 7.

Page 45.

§2.2. Solution of the simplest comparisons.

Number x, which satisfies the comparison

f (x) - 0 (mod p), (2.7)

let us name the solution of this ccmparison. Fcm that presente , :

is clear that if comparison (2.7) has although one solution, *h-n it

has countless solution set, ccngruent with the data by the soluticn

by modulus/modulg p. Among these sclutions t' :- is small pcsitive

numbqr and a small (in the abscluta valie) negative number, i.=., L
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smallest positive delucticn and respectively small~st negativ-

dsd ucticn.

Lat us introduce the concept of ths independent solutions cf

comparison (2.7). Two sclutions a and ccmparisons we will call the

indepentlent solutions, if they are 2ncomparable between themselves )r!

modulus/molule- p. Further, everywtere, speaxing abo-it a number cf

solutions of compariscr (2.7), we will have in mind precisely a

number of independent sclutions, since to speak about a numb.r of

dqoenrant solutions dces not have a sense - it, as we sad aocve,

infinitaly.

occurs tha following thgorem.

Thcorsm 2.1. Tho comparisc

f (x) 0 (mod p)

has as many tht solutions, as numtors in the series/rcw

0, 1, .... p- I (2.8)

it they satisfy.

Proof. If we through al, a2, .-. ,(A designat a these numb7rs,

taen a number of soluticns will be n and the set of the solutions of

comparison (2.7) can be registered 3n tne form:

x - a., (mod p),

x % a; (mod p).
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Let us designate thrcugh a an arbitrary number of sczquenc2

(2.8) . Then any number 0, which lies cut of sequence (2. 8) , can be

registered in the form

Let us assuimq that is t ,7 solution :>f comparison (2. 7) ,i

0 (~ (mod p).

Page 46.

After substitutIng value - int~o thc: right side of tae polyn~omil, w -

will obtain

14hen ce f (a) 0 (mod p),

i.e. a must b,; the soluticn cf comptarison, in other words in cn- off

the numbers a,, a,, ... , a,. But then as the number, congcuent ~t-

a, is not the independent solution cf comparison (2.7). Thus, the

independent, independent soluticns there can te not more than p

Example. Let be given polvnorsial f(x) of the form

f(x) =3z' 2xI -+ 5x~ -- 2.

Substituting in it consecutively/serially for x numbear 0, 1, 2, 3,

.,10 , wo will1 obtair val ups cf f (x) , t ha r esp ctively Ipa 'c 2,
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12, 4 4 , 116, 246, 452, 752, 1164, 170, 2396, 3152, from wrc. a:=

multiplr p=11 o0nlry 44, that ccrres onds tc valu- of x=2.

Thus, th: zcmpariscn

3x 3
-
- 2x8- 5x + 2 0 (mod II)

nas only cr-_ sclutior cf x-2 ( cd 11).

Corcilary. Linear ccn!3ruc-nce

ax + b -= 0 (mod p) (2.9)

can hay; only ons soluticn with a!O (mo, p). Ac:ually/rally, a I

solutions cf this comcarison according .o the pre vious theorem r ust

be located amcng numbers cf sequemce (2.8) . Let aI oe- such solut .on.

This m-ans that
aa, -- b = kp. (2.10)

Le-: there he by a z - seccnd sclution of this com~arison, i. -.

a% +b=!p. (2.11)

Subtrahend (2.11) from (2.10). we will obtain

a (at-a2) = (k - 1) p. (2.12)

Since the right sida of the equality is multiplp p, then !r.ft siAd:

must be multipl_= p. But a,-a 2 as th = eqiality o: two numbers each o.f

which is less than p, it cannot be Jiviied into p. Therefore by

multipie p must be number a. Eut acccrding to the condizicn of

theoren a it cannot be dividad into p. Consequently, equality i2. 12)

cannot cccur.
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Page 4j7.

In cthar words assuriotion abcut thi -fact that ther,4 is a second~

solution of- a2 of- coatpar-scr (2.9), :s invalid, and tr.-s com-carison.

can have only uniqjue solution amcrqg numn)ers of sqju,-nc- (2. ~

Theorgm 2.2. (Fermat low thecrem) . If nurnr a is not mu'" pla

p, thszn with sitnple p i±5 corrEct tl'q compariscn

aP-1 = (mod p). (2.13)

Proo'f. Actually/r- ally, al ... a2 a n-imbe: of selui-nce

(2.3) such, that

After multiplying all these ccinparisons with sach other in

accordarce- with th' established/installed abovq rul'=S, ,jp willcb11

1.2-3. ..(p -1) a 1  ,. . .cx-l(mod p). (2.14)

L.~t us cstablis/4.nstal. first of all, that among numbirs i.

22, . , ap- cannot be two idertical numbers.

Actually/really , ifwa assume the prcs nce o ' two idrenti-cal

numbers a, =a~c then this it means that occur the comparisonis

ak =-c (mod p) H akj Mc (mod p),

i.e. that the comparison
ax -Lb -O0(mod p)
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it his two solutions ki and kj among numbers of sequence (2. )

what bB it cannot on the basis of corollary of the previou4s.

Consequently, among numbers a,, a 2 , ... , ap-I cannot be idsntica1

numbers. Let us fuirther ncte that among them there is no numbnb;r,

[ (iual to z~rc ai =. 0, sinces in thi~s case must occur compariscn:

aki P)f'ro ,~ from which it would fcllcd that a is multicl= p, ani this

contradicts theorem condition.

Ta us, rumbs-r a,, ap2 - different numo--rs of seqrnI-nc2

(2. 8) , moreover among them therp is no zero, whence it fcllcws t-at

After shortening both parts cf comparison (2. 14) to multipliexr (p-1)

we will obta in (2. 13) that AlIso it is th-. assartio n o f thr.cr: .

L' t us giv3 illustrating Fermat th-3orem an axample.

Example. Lat us take a=13, F=5. Number a-ij . 134-1~s~iI2~

is di-vided ty 5.

Page 48.

Eulgr qen- ralizcd Fernalt thecrem to ths case of mutually '
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with o numbers in the following manner.

Theorem 2.3. (Eulerts theorea) . If number a is mutually primF,

with p number, then is correct the CCmparison

aP()= I (rnod p), (.5

where through o(p) is markad i quafltity of- -numbe-rs of s ?qusncs (2.-i)

mutually simple ones with p, 1.6., the not havirig with p

general/common/t otal co factors.

Proof. ki, kz. . . . k.p(p)- mutually prime with p numoers among

numbers of S~UfC (2. 8) , and 1.(4~(P) - number c,-" the, saff--

sequence, di-termin3d by thp ccm~arisons:

ak, a,(mod p), (2.16)

ak2 mc, (mod p),

The multiolication at th,;se com~ar.isons leads to th- ccmo~a:;son

k~2 .. kv(p av P)= cx,% .. av(p) (mod p).

Let us first of all note that numbe-rs a1 must be mutually simpl,

with p.

Aztually/raally, let us assumc? contrary that a1  has with 't

common factor, -..-. , if p~ms. then at = mt, wherp m, S a--'1 t-

i rtegers.
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Lst tus rewrite the arproFriate comparison of (2. 16) in khe fczn.

aki =- mt (mod ms)

or in ths form of the equivalent equality

aki Lms +mt = m (Lst).

F,:cm the littar/last ccmcaison it follows that aki must o

"" diviied into m. 3ut neither ai.cr k, in vi~w of the abse nc- n -.

of general/common/total ccfactors with p can b= divided into m, a,

therefors cannot be divided into ff and their FroducT. This shcws th-

groundlessness of assumpticn abcut Fresence a, of 3utually si. lz

with p. Further, by the already described in th- pr- vious theo-:1

form it is established that amcrg numbers a1 ther? ar-3 nc idsntical

ones.

Page 49.

Since a quantity of numbers (t is equal to 0 (p), then -he se.iq-ncP

of the numbers
= , ,a (P). . (2 . 1 7 )

is thq sqt of all aumbe..rs, mutually simple with p from srquerc.

(2.9), in other words sequqnce (2.17) completely coincides (wit ! ar

accuracy to sequence) with set'ki, kz, .... k(,. Hence it follows tbat

kk 2 ... = ajo:... ( t hat also it proves (2. 15).

Example. Let us take a=5 with p=12. L~t us comoute • (12).
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us writsz cut ssqusnce (2. 8) f cr P=l2: 1, 2, 3, 4i, 5, 6, 7, 3,'3, 10,

11. Are here emphasized t1~e numbers of sequence, mutually simclr- with

12. Such numbers it proved to be 3, i.a. , o ( 12) =3 . Consequen tlv, mnis-

occur zom parison 53= 1 (mod 12) . Testing 53- 1=125- 1=124 (it is divid ed

by 12) shows tnru val-idity of this ccmraison.

§2.3. Primitive roots and the mfthcds of their calculation.

Let us now move on tc the examination of some

ccnc:etr-/spE-cifi-c/actua 1 rrqans cf ccmpaisoris.

Theor: m 2.4. To the compariscn

a'mb (mod p), (2.18)

whpre? p - simple, and a - mutually prime with b number, satisfi:--s

rumber x=E

Then the same ccmparison satisfies any number z, ccngruznt, with

e in modulus/module p-1, i.e.

z - (mod P- ). (2.19)

Proof. Actually/really, if has place (2. 19) , thmn

z -Z=kA(p-I)

and, therssfc:s, a- h(-)

But acccrding to Fermat lcw thecren'

aP1 I (mod p),
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which imply

az-t I (mod p),

and since

at =_b (mod p),

43 obta4n

a- = b (mod p),

that also Prcv;!s tll- assertion cf theorsm.

?ag3 53.

Frcm that prassntad it is evident that if comparison (2. H )

satisfies one nrniber ai of sequence (2. 8),* then it satisfizs 1,

infinit-e quantity of numbers, congruent with ai in moiulus/moluI=

P-1. Ent': z! 6is st tOf thA soluticns, ;ensratoi by number aj,

wilmik e is Oft laci-Sicr. Specifically, in this sease we wdIl

indicate -hat comparisor (2. 18) has as many solutions cf m, as

numbers , g*. m from sequence (2.8) it satisfi:2s.

The-orsm 2.5. If tecompariscr

a' (mod p) (2.20)

satisfies ::rtatn nuinb:r ethc~n this comparison satisfies numb;: kr,

whers k - integir.
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Prcof. Aczoriing tc theorem condition is correct the comrtarison

a_ I (mod p).

After multiplying this comparison auto to itself of tim.s, w

will cbta'n th ccmoariscr

ata ... a ----I (modp) or aw = I (modp),

constituting tha assertion of thecrzm.

* Earliaz it was shown (Fermat low th-iorm), which zomparisza

* (2.20) always satisfies tumbnr p-1.

In general/co m'on/total the case comparison (2.20) can hav=,

depending on values of a and p, mcst va-ied number of solutions. i n

that spocial cas& when a and p are such, that the comparison 'h.os or,

one solution F=p-1, number a is calied primitive root of number

Fir not any number p has primitive roots. in exactly the satme

manner there are no formulas (with exception some p of special form

for which this formula they are established/installed in P. L.

Chebyshev's works), which expressed the value of primitive roots i-.

the case when it exists dependirg on p. Th_ determination of

primitive rocts is carried cut in tha overwhelming majority of th-
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cases by simple the court-rsrha-t cf numo~rs of sequmnc-z ( 2 .o.

Let us consider an examplce of the ietarmination of primitive

roc"S.

Examnr> * T:. fid the pr~mit--ve ro::ts of numbgr p= 7 .

According to Fermat 4thc-Orcn compari.son (2.13) satiLsfisxD.

Tlst - f numba.- a=2e21 s=2 (wTcd 7); 22=-4 (mcd 7), 2-=- (-. od 7;

2 E 2 (acd 7) ; 25=-4 (mncd 7) ; 26=1 (mcd 7) , .~,compar2.son

2x MI (mod 7) has a soluticn of x=3 besides x=6. Consejuently, 2 i't is

not Pri-mitiverzt

Pag-, 51.

Tasting nuabar a=3*3L=.3 (mcd 7); 32-=2 (mod 7); 33- (mcd 7)

34=4 (miod 7); 35-=5 (mod 7) ; 36=1 (mod 7) . Thus only 6 satisfy

compirison3I o)I, are primitive root of number 7.

T-.stiag number a=4.11 I~a (mcd 7) , 42-=2 (mod 7) ; 43= (mcd 7)

4 4-= (mci 7); 4s-- (mcd 7) ; 4~6=1 (mod 7) ; x=3 is tha solution of

omF3 ri SO n 4- = I (mod 7) bosidzs numbe= x=6. Niumber 4 is not primltiv

rcct cf numbsr 7.

Ammir.~
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Testing numb-r a=5 51- 5 (mcd 7); 52=4 (mod 7); 53a6 (mcd 7)

5 4E2 (mcl 7) ; 55=3 (med 7); 56=1 (mod 7) . Compariscn 5x (mod- ) he

the uniqus solution cf x=6. Consequently, 5 - primitive roots :f

numb r 7.

T-sting numb-r a=6*6 1 6 (mcd 7); 62=1 (mcd 7); 63=6 7)

63=_1 (mcl 7); 6'-=1 (mcd 7); 65=6 (mod 7) ; 66=1 (mod 7). It is

obvi:us, 6 it is not pri iitivc roots cf number 7.

By the tasts conductpd we computed all primitive rcots cf nu2b:r

7, namely, 3 and 5.

Th=eram 2.6. if ccmpariscr ax=- I (mod p) itn o SiMD- anl a

normnltiple p satisfies a numter E, th-n it satisfies number i, wTi -cK.

is ths grmatsst rommon div:.sor cf numbers F and p-1.

Proof. For the przof of theorem let us estaolish/install tno

followira facts. if d - greatest common diviscr of numbers ani p-1,

then number A=F/d ind B=p-1/d - mutualli prime numbrs. Further *

r<p nLnd mutually simple with p, then for any m<p there is such

kI<p. that
kr a rm (mod p). (2.21)



DOC 8 1023903 PG

ACtUly/r-3allv, if, 'thS e ju~r-CC

r, 2r., k~r, k2.r , (p-1) r (2.22)

therp iri no su::h riumbr-rs k, and k2 so that simultaneously wc'uld b?

psrfc-rrnd the :;omparisors

kr =m (mod p); kr m 'mod p).

T,: bc-r. zcmpa4:sn-s wcz pt-rfo::ned, tai,;r must nei- p! f~r:

comnpa rison
(k - k2 ) r 0O(mod p).

But this is impossible, since k1 -k 2 is nlot di vided into p an"'

rl2ativel1v prI:nS Wt p.

Page 52.

zons-.quantly f or zach of (p-i1) the nlumbers o f s =gu nca (2. 22) is

satisfiad the zompar-sor
kir -=i (mod p)

for iiff'hrant numbars 4-, whcre 4=1, 2, .. ,M, .. * , p-1, and

th-im is K fcr which is satisf ied comoarison (2. 21) . From. thz!

established fact it follows that if A and B - two mutually prima

n um b-rs, thin always it' iJS possible to 3selict two such -iumbe~s s an!

t, that sA-tB= 1.

Aztually/r~ally, since A and 3 is mutually simple, thur., iftse

assuming A<B, :.t L.s pcssiblr or. the basis (2. 21) to wri.tiz

sA m (mod B).

- *~- swim--
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Transitior to the equality, equivalent to this comparison ;ivm s

sA =tB+m,

which =cr:ct.Iy for any m, in particular f or m=1. thus, occurs th=

e luaility

d d

or s -t (p-l)=d.

Frcm ta- in-tial comrparison or theor Am it follows

a,'% 1 (rnod p),

at (P-') M 1 (mod p),

but after thA Ii.vis on of the first comparison intc the second w-

come to th_ comparison
ad- I (mod p),

constituting -h7 assertion -f thecrem.

This thscr-am it Js easy to spread also to the genaral case: if

and 71 - Any two scluticns of the ccmpariscn

a1  I (mod p),

where p - prime number and a is not multiple p, then thts zonmp:is:-

satisfies their gr-at'st common divisor.

Th;orim 2.7. j - small number, which satisfies comparison

' - I (mod p)
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with si mple p ana a , nonmulti le F. Thenx J is t :a jv / natz:

of rnurbtr p-i1 and all. rr-mainirg numbe-rs, whic h sat iSf y 1 niti-alI

:omparisor, a--a multiple a.

Pag- 53.

Erof - any sciutior, cf this compaziscn. According t. th

pr.=vicus tE~n tas ccmrar4 Scr it miust sat-isfy the grzatr-st Cz mmiz-

djviso.: of rumbacs a and E. But ir this case must be d(<a. -.=anw-Jili a

-smiall from t : numbers, which satisfy this comnarison, an,"

i-quality dc~~z -s imnpossible. Thercfcrs, i=i, (, is th-z

Jiidr/1;?cmnator of any solution of com-par2scn, includini -)-I.

Thmortin 2.3. If to~ the comparison

a' -A (mod p) (2.23 1

where p pime number ani I is mutuallf simpla with a, sa-:2.Sf__s a

numb?= 3 and! a aumbsr a - small, that satisfiIs the ccmpa=r:.scr.

a'x= I (mod p),

thin initial comparison they satisfy p-1/a numbers, namely:

x 2a(modp - ); 2.24)

x I ) x](mod p-I1).

Proof. On tne basis of theorem conditions, it is possi hlw l

a"c = I (mod p),
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After multiplying these comparisons, we will obtain

01 A (mod p),

a n.,a , b o-r 3+ n w i a n' n s at 1s t-is c On p-a:iso r (22.3).

G;r.eral fo:mula for x can he rc-gis-:eral in -,he ci

x= 3 nct. (2.25

Accort-inl tc tn- -:vicusly proved :ho~,if rompa:ison Sati-lf>s

i ny n um n - 3, t:~ I t sa t'-S:. s a ny n umbs r, c c- ; r uE.t w it~ Jin

mod' lIus/-n:7iul p o -1 1n ct her w ord s the s egp ence o f auamber s, w- izh ; £s

obtai.% -'rcm (2. 25) at diffarrt ucssible va lues of r., must conS s st

of :nc- numb,;rs, congrusnt betweer, thsmseIves in oul/nu?

Pag-4 54.

since x - lividr/dercniirator p-f, then in the s-auonce indica-.J-

wgill b obtainal the numbers, congruent between themselves in

modulus/modul? P-1, wh :n ' iffere.nt value n are conjrzuent h--t*'14:

th ?msqlv-s in mo)iul:- P- 1/cn. Lpt ITh and flj oe two suchajj: n.l

occurs th'4 comrpa:;is=n



n.-anjx (mo- I)

Ic-re, after shoctan'ing ccrruariscn on. a, we will obtain

u souls/Ztl :r-l/ all numbers ar: ccn,,zu=an-t 'u- d':f-

0, 1, 2.. ., -
c2

ons; p: nt -.1al solui'-icns cf cc~paris:n (2.23) will be corar"r n In

aodulf-P-i wi-th- iry f: the numnb':s

that also is cl-i.ned in the theorem.

T o t hz ~Zc ntI a 1g c :it h of t h e d et Fmn a t ion 0f

or:2An: v: r cts ~a r thar v7,st in all poss ibli bases/ as -! ,

Thaore3m 2. TZ.C d1 a,.,,-snl iVi es~n~i~zsn

aumb!:.r p-1. Thea ths nc-cessary and sutficiant c.-ndirtior. of >o

that q 4-s orirnitiv;? roots of the zr4 - nuiioer o, is tiwz

- on -;--i i e1nt 7io--c- or oe of the CCTDarisons

P-1 P-1 a-,
q M (mod p), q I Imod p),...q I (mod p).

(2.26)

P: ccot. The qe "1 1o th--4s c cni~r ins c bviJ as, :c ro

axecuin a,: oes.f one of thecse =n-m -4 s,- ns doliU
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the eomparisca

- I (modp)

h&s i solution oasides x=p-1 which contradicts the determinatio.1 of

priMitive roots.

Page 55.

L-t us show now the sufficiency of these conditions. L.t us

assume that besides solution cf x=p-1 there is even some solution of

the comparison q, I (rood p)

x=e, moreover E<p-l and at the same time it coincides not wi'h one of

the exponents with q, which figure in (2.26). If this solution is

small, thpn it must divide p-1

If p - prime nuaber, thenF=-rk and, therefore,

4

i.e. is solution of one of comparisons (2.26) which contradict3 th,.

done assumption.

If - not simple divider/derominator of number p-1, then it :an

be represented in the form

vh : - siol3 divider/d.n-ominator of number p-1, and
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The issumpticn that e is the solutior of comparison (2.20), imply t h

execution of ths compariscn

. =qt--I (mod p),

an! agiin we coma tc thi contradiction.

If <p-l - any solution of ths comparison

q2 (mod p),

then there is a small solution a<p-1 which divides e (E=mt), moreover

for a is pqrfcrnmd compulsorily one of comparisons (2.26), which is

4 shcwn ibove. Coiceal by form, and in this case we arrived at the

contradiction.

Cons.queantly, assumpticn e<p-1 is inadmissible and comparisor

(2.23) can hav only one soluticn of x=p-1, i.e., g is primitive

rocts of number p. FrCm this theorem it follcws that for calculating

4 the primitive roots it is necessary to test/experience bases/bases

only to the nonfulfillment of conditions (2.26).

Page 56.

Example. To compute primitive roots of number p=7.

A.
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Iir p-1=6. Tri= simpl. dividers/dsnominators p-1 are w,=2, 7 2 =3.

The systf.M Cf Caip~risors (2.26) takes form q2 =1 (mod 7), 17_1 (mo

7).

iTst of basis/brse a=2. 225;4 (mod 7); 23Z (med 7). 2 t is

pr4mitiv- roots of .urb'-r 7.

T-esting basis/base a=3. 3Z-2 (mod 7); 33Z6 (mod 7). 3-

primitive roots of number 7.

T;sting b1sis/base a=4. 42p-2 (mod 7); 43=1 (mod 7). 4 Jt ia not

primitive roots of number 7.

Tsting bisis/base a=5. 52=4. (mod 7); 53=6 (mod 7). 5 -

primitivs rcots of .umbqr 7.

Tqsting bi3sis/base a=6. 62.S (mod 7); 63-6 (mod 7). 6 it is nct

primitive rocts of number 7.

Thus, relyIng on this theorrm, we )btain primitive rocts )f

number 7 by simpler method than it is earlier.

§2.4. theory of indic-s.
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*Theorem 2.10. If q - primitive roots of number p, then :hs

comparison
q v A (mod p), (2.27)

whers A - i.s nct multiple p, has one and only one solutlon.

Proof. Acc-3cdinq to the determination of primitiv= rco's 4:): th

cornpa ri son
x~ I (mod p)

thi smill valua x, it satisfying, oxists x=p-1. Comparison (2.27) can

have only one solutlon, si-nce £2j..= 0  or to rno4 at all

have not ons solution. Thecrem claims what solution is to Pat.

Conseguently, the proof of theores is reduced to thd proof of the

fact that comparison (2.27) cannot but have a solution.

Let us assuze that (2.27) it does not have the solution. 34rc-4 A

on condition not multiply p, the A duri-ng the divis3.on into p givps

in the remainder/residue any cf numbers

1, 2, .. .. p -I. (2.28)

Let this be number r, i.e.

A r r(mod p).
Page 57.

Thnn we obtiin tho comparisom

qmr (mod p), (2.29)
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which also dces not hav,? a scluticn, since otherwis,i would havR th,

solution and (2.27). However, since g - mutually prime with p number,

the 9 i i..

is not ivisibla by p and, ther-pfcrs, aach of thaam in moduJlus/modul1-

p is congrusnt with one c-f nurb,;rs (2. 23) .Henc-a it follows that rach

of p-1 numbers

0, 1, 2, .. p-2 (2.30)

satisfies any of ths comparisons

M-3anwhils scms one of them is comparison (2.29), wtich, by

hypotheisis, does rot have a scluticn. Consequently, each of p-I

numba -s (2. 30) m ust satis fy any o f p- 2 Compar isons (2. 31), g?.e at

least any on~e cf themu they must satisfy two numbers of (2.30) . In

other words must exist this ccmparison,

MX p (mod p),

L which has two solutions. But this is impossible, since earlier it was

shown that if comparison (2.27) has a solution, the only orce.

Consenqu~.ntly, c-ompirison (2.29) is obligated to have a soluticn, and

with it has the solution and ciparison (2.27).

Determination. Number 3,which is tha- solution of the

comparison
-I A (mod p),
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is calla-d the inlax of number A and is designat-id J= ind A. !rim:t-' -=

roots q is called the basis/base cf index.

From all that has been previcusly stated, it follcws that for

the determination of the index cf any number A from modulus/module p

it is nscessary to find primitive roots cf p and th Bn to find t"I

solution of thi3 compariscn fcr this primitive root.

Let us give an example of the calculation of the indices o:f
numbers, using in this cas a the calculated in the previous ca:raraph

primitive roots.

Example. To compute indices according to module 7 numbers 3, 1,

2, 3, 4, 5, 6. Primitive roots cf number 7 are 3 anA 5.

Let us take bisis/base S=3. lat us compute 3* for x=O, 1, 2, 3,
*i i

4 1 4, 5, 6.3°11 (mod 7); 31-3 (mcd 7); 32-2 (mod 7); 3 3 =b (mod 7); 3 %i'4

(mcd 7); 355,5 (mcd 7); 3*1 (mod ').

Page 58.

From these comparisons it tollows: ini 1=0; in4 2=2; ini 3=1:

lad 4-4; ind 5=5; ind 6=3.
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L:tt us analc:ously find the indices of these numbers from

basis/bass 5: ind 1=0; ind 2=4; ind 3=5; ind 4-=2; ind 5=1; ind 6=3.

Let us estiblish/install new some properties of indices, which

are ietermining th, pessibility of their usa in tho machine

arithmetic, during the representaticn of numbers in ths system .f

rssiiuLl classes.

Theorem 2.11. If Aj, A2, At,

are positive intager =umbers whose indizes on modulus/modulp p with

primitive roots of q are respectively equal to

il~~, is, .,i,

and if through 3 is designated the index of the product of these

numbers:: " A - AA6 ... A&

. 1 P

* 4on the modulus/zodul.e4with tho samP prizitive roots of 1, then thr

index of product is equal to the sum of the indices of multipliers,

undertaken on m~dulus/module p-1, i.e.

i - 1).

Proof. In i-acordance with the determination of indices occur thb-

*comparisons

q', = At (mod p), q4 = A2 (mod p), ... q' m A (modp).

hfter multiplying these ccmpariscns, w? will obtain

qf"+.. +, A (mod p)
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or, taking into account introduced index J cf number A,

q +**+iq. l (mod p)

Dea" both parts of the compariscn on we will obtain the

comparison

q,+,1..+ ' ,' _ I (mod p). (2.33)

Sincq q - primizivs rocts of number p, then all solutions of

comparison (2.33) will be multicle p-1. In othor words

Tiis comparison can be rewritten in the form (2.32).

Page 59.

In the expanded/scanned form the prcved comparison can be register d

as follows:

ind (AjAz. .. A,) , ind Aj (mod p- 1). (2.34)

4 1. In cth=r words tha irdqx of product is =qual tha sum of thp inli-dis

of multiplier on modulus/module p-1.

§2.5. Use/application o . indices for ex3cuting the arithmetic

operations.

The examined in the previous section special fsature/?eculiarity
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of indicss will bring tcgether them with the loqarithms and it makes

it possible to substitute the multiplication cf numbers and raisir

to the power by the addition of their indizes with the subsequent

transition from the index of prcduct and degree to the prcduct itself

and the dqgree. For the transition from the ind x to an actual numbsr

they arR applied anti-index.

suchD-termination. The anti-index of number J is called rumber

such, that

S= ind a or a = ind-1 j. (2.35)

If arti-inlx is dnsignated through N(3'), then from (2.35) i' follcws

N (ind a)= a. (2.36)

In order to have the capability to use for purposes of multiplizati-on

ralationship/ratic (2.32) , it is necessary to compute the

anti-indices of numbers. This easily is reached, as soon as thire ar-

calculated indices of numbers, by the appropriate rotation/acc.ss Df

4 thq table of ializas or the basis of expressicn (2.36).

Example. To compute anti-indices according to the modulus/modul?

of 7 numbors 0, 1, 2, 3, 4, 5.

In the pravious example are given the indices of numbers f.cm 1

to 6. Their valies prove to be in the limits of sequence. 0, 1, 2, 3,

4, 5. It is logical that number 0 cannot have final in-ix, sinat
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thera i-s no tHis ?xporznt, aftc-r raising into which fir-al, i:e.

from zsro, basis/bass it wculd ce. rcssiole to obtain 0.

* Primitive coots of 3. N(O)1l; N(1)=3; N(2)=2; N(3)=6; N(L4)=4:;

N (5) =5.

Primitive coot of 5. Ni0)=1; 4 (1)=5 N(2)=4; N (3)=6; N (4)=2:

R-laticnship/ratic (2.3L4) can bc' used, also, for r-xecuticn ef

division or, the modulus/mcdule. Under the division on mod ulusA't-dule

a/b (mod p) is understood the quotient a~kp/b, where k -small froa

* the possible rumbers, which ccnvert a+kp into a numbgr, multiple b.

in this case?, if a/b (mod p) =c,

(nd a-idb) (mod p- 1)=ind c. (2.37)

Page 60.

4

By th? usa/application of indices it is possible to com~putit th-

more comolicated 9xprsssicns, which include the operations cf

multiplicati cr, raising tc the power, divisions.

Exampc. To compute the. expression

C - ab (mod p).

where- a=2; b=5; Y.3; d-4; p= 7 .
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1. We find indi.ces of values, entering computed expression,p

aft;?r taking primitivP roots of 5: ind 2=4; ind 5=1; ind 3=5; ind

42.

2. Wa conmilte ind':;x of result:

indc=_4+3-1-2(nod6), indc=l.

3. we find anti-index 1:N(1)=5. Di.-ect calculation s~-ows :hat

2.53 mrod 7) = 5.

§2.6. Table of indices fcr the siaple bases/basas.

In the system of residual classes it is propossd to apply

indices fcr obtaining the digits cf the product of numbers with z-azh

of the bases/bases individually. Althou4h the theory of irdices can

be used also for the complicated moduli/modules and formula (2.34)

can luring the proper selecti.cn of the complicated modulus/modulqe,

which ensures the presence of primitive roots, occur f:): the

multiplied numbars as a whole however for the formulat3d zarg'~t cf

the use/apDpli-cation of indices it suffices to axamine iJnde'Lx

separately on the moduli/modules - ths oasis of the selected systT..

In this casp it i-s nct difficult to select thesa bases/bas-:s ty such.

that for them the primitive rccts would sxist and, therefore, . oul!
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be constructed thq tabls of indices. For any s'.mpl, modulus/.Iluln

the primitive roots always exists, and therafcre, if w_ as the basi3

of system use prime numbers (that, generally speaking, it is

appropriate and in cthpr respects), thr. is satisfied beth the basic

requirement of the uniquersss of the representaticn of numbers -

mutual Timplicity of th: basis cf syst-m and th: conditicr for

existence of primitive rccts and, therefore, the possibility of t-

construction of th- corresponding tablos of indices.

Page 61.

Further ars given the tables of indices fo: the prim, numbrs,

written/rrcoraed not more than by six bits. Sinc:e for the circuit

realization cne or another the character of the connections, whiich

reflect tabular oonfermity, can prove to be mor. acceptable, !at Us

give thq tables of indices for sci primitive roots, although is

realized it must be for each basis/bas. thp tabis only on any r.e

primitive roots.
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(11OCHOBaHHe Oc~toua~ime cOcHoeaHime

(ZmmlHHAemabi &IHWAmbl

2 q2 3 3 5

0 -0 -- 0
1 0 1 0 0 0 0
2 1 2 1 3 2 2 4

n3 3 1 3 1I51
4 2 2 4 4 2

5 5 1
6 3 3

@ CaosaHHe p=ll OCHonauHHe p=13
~HJIeKC1l - _______ HAeKCU -

2, q 278 2, q 6 7 11

2 1 9 37 2 1 5 11 7
3 8 2 46 3 4 88 4
4 2 8 64 4 2 1010 2
5 4 6 28 5 99313
6 9 17 3 6 Is1 71
7 7 3 19 7 11 7 1 5
8 3 79 1 8 3 3 0

9 6 48 2 9 8I 4 8

12 6 6 6 6

Key: (1). Basi-s/bas-p (2). Tndi ccs.
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Page 62.

U OctooaHme p= 1 7

q 3 5 6 7 10 11 12 14

( 0
10 0 0 0 0 0 0 0

2 14 6 2 10 10 2 6 14
3 1 13 15 3 11 7 5 9
4 12 12 4 4 4 4 12 12
5 5 11 1 7 j a
C 15 3 1 13 5 9 11 7
7 11 15 5 1 9 13 7 3
8 10 2 6 14 14 6 2 10
9 2 10 14 6 6 14 10 2

10 3 7 13 9 1 5 15 II
11 7 11 9 5 13 1 3 15
12 13 9 3 7 15 11 I 5
13 4 4 12 12 12 12 4 4
14 9 5 7 II 3 15 13 1

6 14 10 2 2 10 14 6
16 ) 8 8 8 8 8 8 8

6 /Ocsosa He p=19
NHAe~cck

1 2 3 10 13 14 15

I 0 0 0 0 0 0
2 1 7 17 II 13 5
3 13 1 5 17 7 11
4 2 14 16 4 8 10

16 4 2 14 10 8
6 14 2 4 10 2 16
7 6 6 12 12 6 12
8 3 3 15 15 3 15
9 8 2 10 16 14 4

10 15 II 1 7 5 13
II 12 12 6 6 12 6
12 15 15 3 3 15 3
13 5 17 13 1 11 7
14 7 13 II 5 I 17

i6 I 4 10 14 8 16 2
17 1 u 16 8 2 4 14
18 9 9 9 9 9 9

Key: (1). Basis/base. (2). Indices.
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Page 63.

(tjOcHoanle P-23
( f fAeKCU

5 7 10 11 14 15 17 19 20 21
¢.7

0 - -
1 0 0 0 0 0 0 0 0 0 0
2 2 14 8 10 20 4 )6 6 I8 12
3 16 2 20 14 6 10 J8 4 12 8
4 4 6 1R A2 18 8 10 12 14 2
5 I 7 15 5 21 13 19 3 9 17
6 18 16 6 2 4 14 12 10 8 20
7 19 1 21 7 3 5 9 13 17 15
8 6 20 2 8 16 12 4 18 10 14
9 10 4 18 6 12 20 14 8 2 16

10 3 21 1 15 19 17 13 9 5 7
11 9 19 3 1 13 7 17 5 15 21
12 20 8 14 12 2 18 6 16 4 10
13 14 10 12 4 8 6 2 20 16 18
14 21 15 7 17 1 9 3 19 13 5
15 17 9 13 !q 5 1 15 7 21 2
16 8 12 10 18 14 16 20 2 6 4
17 7 5 17 13 15 3 1 21 19 9
i8 12 18 4 6 10 2 8 14 20 6
19 15 17 5 9 7 19 21 1 3 1320 5 13 9 3 17 21 7 15 1 19
21 13 3 19 21 9 15 5 17 7 1

22 _ 11 11 11 11 11 I II

:(I) .Basis/base. (2). Tndices.
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Oaosaue p-29
I=AelIcM
U 3 ', 1 2 3 8 10 11 14 15 18 19 21 26 27

0 -
1 0 0 0 0 0 0 0 0 0 0 0 0
2 1 17 19 11 9 13 27 23 25 5 3 15
3 5 1 11 27 17 9 23 3 13 25 15 19
4 2 6 10 22 18 26 26 18 22 10 6 2
5 22 10 26 18 2 6 6 2 18 26 10 22
6 6 18 2 10 26 22 22 26 10 2 18 6
7 12 8 4 20 24 16 16 24 20 4 a 12
8 3 23 1 5 27 11 25 13 19 15 9 17
9 10 2 22 26 6 18 18 6 26 22 2 10
10 23_27-17 1 it It_ 2,5__ AL__,3 - 9

I! 25 5 27 23 1 17 3 15 9 13 19 II
12 7 7 21 21 7 7 21 21 7 7 21 21
13 18 26 6 2 22 30 10 22 2 6 26 18
14 13 25 23 3 5 I 15 19 17 9 II 27
15 27 It 9 17 19 15 1 5 3 23 25 13
16 4 12 2) 16 8 24 24 8 16 20 12 4
17 21 21 7 7 21 21 7 7 21 21 7 7
18 I1 19 13 9 15 3 17 1 23 27 5 25
19 9 13 - 15 25 5 19 33 1 17 27 23
20 24 16 8 12 ) 4 4 20 12 8 16 24
21 17 9 15 19 13 25 It 27 5 I 23 3
22 26 22 18 6 10 2 2 10 6 18 22 26
23 20 4 16 24 12 8 8 12 24 16 4 20
24 8 24 32 4 16 20 20 16 4 12 24 8
25 16 20 14 8 4 12 32 4 8 24 20 16
26 19 15 25 13 3 23 9 17 27 1 1 5
27 15 3 5 25 23 27 13 9 11 19 17 1
28 14 14 14 14 14 14 14 14 14 14 14 14

Key: (1). Basis/base. (2) . Indices.

"4"

-mm
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Page 64.

(AOcuomanue p-=31

p=31

3 11 12 13 17 21 22 24

I 0 0 0 0 0 0 0 0
2 24 18 6 24 12 6 12 18
3 1 17 19 I1 13 29 23 7
4 18 6 12 18 24 12 24 6
5 20 10 20 10 20 10 10 20
6 25 5 25 5 25 5 5 25
7 28 26 22 8 4 2 14 16

" 8 12 24 18 12 6 IS 6 24
9 2 4 8 22 26 28 16 14
10 14 28 26 4 2 16 22 8
11 23 1 17 13 29 7 19 11
12 19 23 1 29 7 II 17 13
13 !1 7 29 i 23 19 13 17
14 22 14 28 2 16 8 26 4
15 21 27 9 21 3 9 3 27
16 6 12 24 6 18 24 18 12

17 7 29 13 17 1 2. II 19
18 26 22 14 16 8 4 28 2
19 4 8 16 14 22 26 2 28
20 8 16 2 28 14 22 4 26
21 29 13 11 19 " I 7 2;
22 17 19 23 7 II Ii 1
23 27 9 J 27 21 j 2 1
24 13 I 7 23 19 17 29 I
25 10 20 10 20 1u 2u -lu I

- 26 5 25 5 25 5 25 25 5
27 3 21 27 3 9 27 9 21
28 16 2 4 26 28 14 8 22
29 9 3 21 9 27 21 27 3
30 Is is 13 Is 15 15 15 is

Key: (1). Basis/base. (2). Tndices.
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Page 65.
('iOcuona,.e p-37

(A)'muAeKcu

2 5 13 15 17I 18 19 20 22 24 32

0
, 0 0 0 0 0 0 0 0 0 0 0
2 1 II 23 25 31 17 35 13 7 5 29
3 26 34 22 2 14 10 10 14 2 2"2 34
4 2 22 10 14 26 34 34 26 14 I0
5 23 2 25 35 29 31 13 11 17 7 19
6 27 9 9 27 9 27 9 27 9 27 27
7 32 28 16 8 20 4 4 20 8 16 28
8 3 33 33 3 21 15 33 3 21 15 15
9 16 32 8 4 28 20 20 28 4 8 32
10 24 12 12 24 24 12 12 24 24 12 12
11 30 6 6 30 30 6 6 30 30 6 6
12 28 20 32 16 4 8 8 4 16 32 20
13 II 13 I 23 17 7 25 35 5 19 31
14 33 3 3 33 15 21 3 33 15 21 21
15 13 35 11 1 7 5 23 25 19 29 1
16 4 8 20 28 16 32 32 16 28 20 8
17 7 5 17 31 1 11 29 19 13 35 23
18 17 7 31 29 23 I 19 5 I1 13 25
19 35 25 13 11 5 19 1 23 29 31 7
20 25 23 35 13 19 29 11 1 :31 17 5
21 22 26 2 10 34 14 14 34 10 2 26

22 31 17 29 19 25 23 5 7 1 11 35
q3 15 21 21 15 33 3 21 15 33 3 3
24 29 31 19 5 35 25 7 17 23 I 13
25 I0 2 14 34 22 26 26 22 34 14 2
26 12 24 24 I2 12 24 24 12 12 14 24
27 6 30 30 6 6 30 30 6 6 30 30
28 34 14 26 22 10 2 2 10 22 26 14
29 21 15 15 21 3 33 15 21 3 33 33
S0 14 10 34 26 2 22 22 2 26 34 10
31 9 27 27 9 27 9 27 9 27 9 9
32 5 19 7 17 II 13 31 29 35 25 I
33 20 4 28 32 8 16 16 8 32 28 4
34 8 16 4 20 32 28 28 32 20 4 16
35 19 29 5 7 13 35 17 31 25 23 11
36 18 18 18 I 18 18 18 I8 is 18 18

Key: (1). Basis/base.. (2). :.ndices.
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Paqe 66.
t CHosaH e p-41

- 6 7 11 12 13 15 17 192224262829303435

0
I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 26142238 638 234343338 638221426
3 1525 5 525351515353515 52525 535
4 1228 4361236 42828 4361236 42812
5 22183426 2 614383814 6 22634 1822
6 1 3927 3-61 13 17 9293733 11 23 7 1921
7 32 I 1337 9272331 11 3 729 173321 19
8 38 226341814 62222 614183426 238
9 30 10 10 010 30 30 30 30 30 30 I0 I0 I0 10 30
10 8 32 16 24 8 24 16 32 32 16 24 824 16 32 8
II 3 37 1 9 13 39 11 27 731 19 33 29 21 17 23
12 27 13 9 1 37 31 19 3 23 39 II 17 21 29 33 7
13 31 9 37 13 1 3 739 19 27 23 21 33 17 29 11
14 2515352315 52525 5 52535151535 5
15 37 3 39 31 27 1 29 13 33 9 21 7 11 19 23 17
16 24 16 8 32 24 32 8 16 16 832 24 32 8 16 24
17 33 7 11 7 23 29 1 17 37 21 9 3 39 31 27 13
18 I6 24 32 8 16 8 32 24 24 32 8 I 8 32 24 16
19 9 31 3 27 39 37 33 1 21 13 17 19 7 23 11 29

E.I

20 34 63822 14 218262618 2142238 634
2, 1426 18 2342238 6 6.382234 2 1825 14
22 29 11 23 7 19 17 13 21 1 33 37 39 27 3 31 9
23 36 4 12 28 36 28 12 4 4 12 28 36 28 12 4 36
24 13 12 31 27 3 9 21 37 17 1 29 23 19 11 7 .3
25 4 36 28 12 4 12 28 :36 36 28 12 4 12 28 36 4
26 17 23 19 17 7 21 9 33 13 29 1 27 31 3l 3 
27 5 35 15 15 35 25 5 525 25 5 15 :3335 52,
28 11 29 17 33 21 23 27 19 39 7 3 I 13 37 9 31
29 7 33 29 21 17 11 39 23 3 19 31 37 1 9 IJ 27
30 23 26 21 29 33 19 31 7 27 11 39 13 9 1 37 3
31 281236 428 436121236 428 4361228
32 10 30 30 30 30 10 I0I0 I0 10i0 30 30 30 30 I0
33 1822 614 383426 2 226343814 62218
34 19 21 33 17 29 7 3 11 31 23 27 9 37 13 1 39
35 21 19 7 23 I1 33 37 29 9 17 13 31 3 27 39 1
36 23814 6222634 18 1A.34 1- 22 6 14 lQ o
j7 32 8 24 16 32 16 24 8 a 24 16 32 16 24 8 32
38 35 5 2525 515353515153525 5 52515
39 6 34 2 18 26 18 22 14 14 22 18 26 18 2 34 b
40 2020 202020202020 202 2o202o222

Z~ v ( ) . 3as .s/ bas a . (2) . d.a C#
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Pages 67-68.

0.O .,osaHe p=43
NU AeKchl

q 3 5 12 18 19 20 26 28 29 30 33 34

1 0 0 0 0 0 0 0 0 0 0 0 0
2 27 33 15 27 33 3 9 39 15 33 9 3
3 I 37 13 29 31 25 5 17 41 23 19 114 12 24 30 12 36 6 !S 36 3024 I
5 25 1 31 11 19 37 41 5 17 29 13 23
6 28 28 28 14 28 28 14 14 14 14 28 14
7 35 35 35 7 35 35 7 7 7 7 35 7
8 39 15 3 39 33 9 27 33 3 15 27 9
9 2 32 26 16 20 8 10 34 40 4 38 22
10 10 34 4 38 16 40 8 2 32 20 22 26
11 30 18 12 30 6 36 24 6 12 18 24 36
12 13 19 1 41 25 31 23 Ii 29 5 37 17
13 32 8 28 4 26 2 34 40 10 22 2u 16
14 20 26 8 34 32 38 16 4 22 40 2 Wu
15 26 38 2 40 8 20 4 22 16 10 32 34

16 24 6 18 24 30 12 36 30 18 6 36 12

17 38 20 32 10 2 26 22 16 4 34 8 40

18 29 23 41 1 17 11 19 31 13 37 5 25
19 19 31 37 15 1 13 11 29 23 17 25 41

h) 37 25 19 23 13 1 17 41 5 II 31 29

21 36 30 6 36 24 18 12 24 6 30 12 18

22 15 9 27 15 3 39 33 3 27 9 33 39

23 16 4 40 2 34 22 38 20 26 32 10 8

24 40 10 16 26 22 34 32 8 2 38 4 20

25 8 2 20 22 38 32 40 10 34 16 26 4
26 17 41 11 31 23 5 1 37 25 13 29 19
27 3 27 39 3 9 33 15 9 39 27 15 33
28 5 17 23 19 29 41 25 1 37 31 11 13
29 41 5 29 13 11 17 37 25 1 19 23 31
30 11 29 17 25 5 23 13 19 31 1 41 37
31 34 40 22 20 4 10 2 32 8 26 16 38
32 9 39 33 9 27 15 3 27 33 39 3 15
33 31 13 25 17 37 19 29 23 It 41 1 5

34 23 11 5 37 41 29 31 13 19 25 17 1
35 18 36 24 18 12 30 6 12 24 36 6 30
36 14 14 14 28 14 14 28 2828 28 14 20
37 7 7 7 35 7 7 35 35 35 36 7 35
38 4 22 10 32 40 16 20 26 38 8 34 2

39 33 3 9 33 15 27 39 15 9 3 39 27
40 22 16 34 8 10 4 26 38 20 2 40 32
41 6 12 36 6 18 24 30 18 36 12 30 24

42 21 21 21 21 21 21 21 21 21 21 21 21

)(3) nck



DOC x 41023903 PAGE

Pages r)9-70.

L(4OcfoaH e p -47
CARMetCe

"l 5 10 11 13 15 19 20 22 23 26 29 31 33 35 38 39 40 41 43 44 45

2 18 30 42 10 14 28 44 32 22 26 36 6 16 34 20 8 2 38 12 40 24
3 .0 18 16 6 36 26 8 30 4 34 40 22 28 2 12 14 38 32 44 24 42
4 36 14 38 20 28 10 42 18 44 6 26 12 32 22 40 16 4 30 24 34 2
5 1 17 33 21 11 45 5 35 37 27 25 31 29 7 19 3 41 43 39 15 9
6 38 2 12 16 4 8 6 42 26 14 30 28 44 36 32 22 40 24 10 18 20
7 32 38 44 28 30 14 22 16 34 36 18 26 8 40 10 4 24 42 6 20 12
8 8 44 34 30 42 38 40 4 20 32 16 18 2 10 14 24 6 22 36 28 26
9 40 36 32 12 26 6 16 20 8 22 34 44 10 4 24 28 30 18 42 2 38
10 19 1 29 31 25 27 3 21 13 7 15 37 45 41 '39 1 43 35 5 9 .13
i1 7 27 1 9 31 39 35 15 29 5 37 33 19 .3 41 21 11 25 43 13 17
12 10 32 8 26 18 36 4 28 2 40 20 34 14 24 6 3n 42 16 22 12 44
13 11 3 41 1 29 35 9 17 39 21 45 19 43 1i 25 ,33 37 13 15 27 7
14 4 22 40 38 44 42 20 2 10 16 8 32 24 28 .30 12 26 34 18 14 36
15 21 35 3 27 1 25 13 45 41 15 19 7 11 9 31 17 33 29 37 39 5
16 26 28 30 40 10 20 38 36 42 12 6 24 18 44 :34 32 8 14 2 22 4
17 16 42 22 14 38 30 34 8 40 18 32 36 4 20 28 2 32 44 26 0 6
18 12 20 28 22 40 34 14 6 30 2 24 4 26 38 44 36 32 10 8 42 16
19 45 29 13 25 35 1 41 11 9 19 21 15 17 39 27 4.3 3 7 31 37
20 37 31 25 41 39 9 1 7 35 33 5 43 15 29 13 19 45 27 17 3 It
21 6 10 14 34 20 40 30 26 38 24 12 2 36 42 22 I8 16 28 4 44 8
22 25 II 4.3 19 45 21 .33 1 5 31 27 39 35 *37 135 29 .3 17 9 7 41

2-3 5 39 27 13--9 41 25-37 1 43 33 17 7 35 .3 15 21 31 11 29 45
2.1 28 16 4 36 32 18 2 14 24 20 10 40 30 12 26 38 44 8 34 6 22
25 2 14 20 42 22 44 10 24 28 8 4 16 12 14 38 6 36 40 32 30 18
26 -- q 3 37 11 43 17 7 .3 15 1 35 25 13 19 45 41 39 5 27 21 31
27 14 8 2 18 16 32 24 30 12 10 28 20 38 6 36 42 22 4 40 26 34
2 ',,22 6 36 2 12 24 18 34 32 42 44 38 40 16 4 20 28 26 30 8 14
29 35 43 5 45 17 11 37 29 7 25 1 27 3 15 21 13 9 33 31 19 39
30 39 39 45 37 15 1 11 31 17 41 9 13 27 43 5 25 35 21 3 33 29
31 3 5 7 17 33 3 15 11 19 35 29 1 41 21 II 9 31 37 25 45 27

L 32 44 12 26 4 24 2 36 22 18 38 42 30 34 32 8 40 10 6 14 16 28
33 27 15 17 15 21 19 43 25 33 39 31 9 1 5 7 35 3 1 1 41 37 13
34 34 26 18 24 6 12 32 40 16 44 22 42 20 8 2 10 14 36 38 4 30
35 33 9 31 3 41 13 27 5 25 17 43 II 37 I 29 7 19 39 45 35 21
36 30 4 24 32 8 16 12 38 6 38 14 10 42 26 18 44 34 2 20 36 40
37 42 24 6 8 2 4 26 44 36 30 38 14 22 18 16 34 20 12 28 32 1038 17 13 9 35 3 29 39 43 31 45 11 21 33 27 I 5 7 41 19 25 15

39 31 21 11 7' 19 15 17 27 43 9 39 41 25 3,3 37' 1 29 45 13 5 3
40 9 15 21 5 7 37 45 39 11 13 41 3 31 17 33 27 1 19 29 43 35
41 15 25 35 39 27 31 29 19 3 37 7 5 21 13 9 45 17 1 33 41 43
42 24 40 I0 44 34 22 28 12 14 4 2 81 6 30 42 211 18 20 16 381 32
43 13 37 15 43 5 33 19 41 21 29 3 35 9 45 17 39 27 7 I 11 2544 43 41 39 29 13 3 31 33 27 11 17 45 5 25 35 37 15 9 21 3 19
45 41 7 19 33 37 5 21 9 45 3 13 29 39 11 43 31 25 15 35 17 1

46 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23

K ey : (1). Basis/base. (2) . Indices.
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P" cos 71-72.
(IIOcxomaa e p=53

SHHexcbi

. 1 2 3 5 8 12 14 18 19 20 21 22 26 27 31 32 33 34 35 39 41 45 48 50 51

I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o 0 0 0 0 0 0 0 0 0

2 1 49 31 35 11 7 3 45 17 47 15 25 51 41 21 43 19 29 33 37 9 5 23 27
3 17 1 7 23 31 15 51 37 29 19 47 9 35 21 45 3 11 25 41 5 49 33 27 43
4 2 46 10 18 22 14 6 38 34 42 30 50 50 30 42 34 38 6 14 22 18 10 46 2
5 47 15 1 33 49 17 37 35 19 25 29 31 5 3 51 45 9 11 43 23 7 27 41 21
6 18 50 38 6 42 22 2 30 46 14 10 34 34 10 14 46 30 2 22 42 6 38 50 18
7 14 10 18 22 50 46 42 6 30 34 2 38 38 2 34 30 6 42 46 50 22 18 10 14
8 3 43 41 1 33 21 9 31 51 37 45 23 49 19 11 25 5 35 47 7 27 15 17 29
9 34 2 14 46 10 30 50 22 6 38 42 18 18 42 38 6 22 50 30 10 46 14 2 34
10 48 12 32 16 8 24 40 28 36 20 44 4 4 44 20 36 28 40 24 8 16 32 12.48
I 6 34 30 2 14 42 18 10 50 22 38 46 46 38 22 50 10 18 42 14 2 30 34 6
12 19 47 17 41 1 29 5 23 11 9 25 7 33 51 35 37 49 31 3 27 15 43 21 45
13 24 32 16 8 4 12 20 40 44 36 48 28 28 48 36 44 40 20 12 4 8 16 32 24
14 15 7 49 5 9 1 45 51 47 29 17 11 37 43 3 21 25 19 27 35 31 23 33 41
15 12 16 8 4 28 32 36 20 48 44 24 40 40 24 44 48 20 36 32 28 4 8 16 12
16 4 40 20 36 44 28 12 24 16 32 8 48 48 8 32 16 24 12 28 44 36 20 40 4
17 10 212 50 38 6 18 30 34 14 2 46 42 42 46 2 14 34 30 18 6 38 50 22 10
18 35 51 45 29 21 37 1 15 23 33 5 43 17 31 7 49 41 27 11 47 3 19 25 9
19 37 45 3 47 43 51 7 1 5 23 35 41 15 9 49 31 27 33 25 17 21 29 19 11
20 49 9 II 51 19 31 43 21 1 15 7 29 3 33 41 27 47 17 5 45 25 37 35 23
21 31 11 15 45 29 9 41 43 7 1 49 27 21 23 27 33 17 15 35 3 19 51 37 5
22 7 31 9 37 25 49 21 3 15 17 1 19 45 27 43 41 29 47 23 51 11 35 5 33
2," 39 39 13 13 13 13 13 39 39 13 13 39 13 39 39 13 13 39 39 39 39 39 13 13
24 20 44 48 24 12 36 8 16 28 4 40 32 32 40 4 28 16 8 3 12 24 48 44 20
27, 42 30 2 14 46 34 22 18 38 50 6 10 10 6 50 38 18 22 34 46 14 2 30 42
26 25 29 47 43 15 19 23 339 31 II 1 27 37 5 35 7 49 45 41 17 21 3 51
27 51 3 21 17 41 45 49 7 35 5 37 27 1 11 31 9 33 23 19 15 43 47 29 25
28 16 4 28 40 20 8 48 44 12 24 32 36 36 32 24 12 44 48 8 20 40 28 4 16
29 46 18 22 50 38 10 34 42 2 30 14 6 6 14 30 2 42 34 10 38 50 22 18 46i
30 13 13 39 39 39 39 39 13 13 39 39 13 39 13 13 39 39 13 13 13 13 13 39 39
31 33 5 35 11 51 23 47 29 41 43 27 45 19 1 17 15 3 21 49 25 37 9 31 7
32 5 37 51 19 3 35 15 17 33 27 23 21 47 47 49 1 7 43 9 29 45 25 11 31
33 23 35 37 25 45 5 17 47 27 41 33 3 29 7 15 1 21 43 31 19 51 II 9 49
34 11 19 29 21 17 25 33 27 31 49 9 15 41 35 23 5 1 7 51 43 47 3 45 37
35 9 25 19 3 47 11 27 41 49 7 31 17 43 5 33 23 14 1 37 21 29 45 51 35
36 36 48 24 12 32 44 4 8 40 28 20 16 16 20 28 40 8 4 44 32 12 24 48 36
37 30 14 46 10 18 2 38 50 42 6 34 22 22 34 6 42 50 38 2 18 10 46 14 30
38 38 42 34 30 2 6 10 46 22 18 50 14 14 50 18 22 46 10 6 2 30 34 42 38
39 41 33 23 31 35 27 19 25 21 3 43 37 11 17 29 47 51 45 1 9 5 49 7 15
40 50 6 42 34 30 38 46 14 18 10 22 2 2 22 10 18 14 46 38 30 34 42 6 50
41 45 21 43 15 27 3 31 49 37 35 51 33 7 25 9 11 23 5 29 1 41 17 47 19
42 32 8 4 28 40 16 44 36 24 48 12 20 20 12 48 24 36 44 16 40 28 4 8 31
43 22 38 6 42 34 50 14 2 10 46 18 30 30 18 46 10 2 14 50 34 42 6 38 22
44 8 28 40 20 36 4 24 48 32 12 16 44 44 10 12 32 48 24 4 36 20 40 28 8
45 29 17 15 27 7 47 35 5 25 11 19 49 23 45 37 51 31 9 21 33 1 41 43 3
46 40 36 44 48 24 20 16 32 4 8 28 12 12 28 8 4 32 16 20 24 48 44 36 40
47 44 24 12 32 16 48 28 4 20 40 36 8 8 36 40 20 4 28 48 16 32 12 24 44
48 21 41 27 7 23 43 11 9 45 51 3 5 31 29 25 19 35 37 17 49 3.3 1 15 47
49 28 20 36 44 48 40 32 12 8 16 4 24 24 4 16 8 12 32 40 48 44 36 20 28
50 43 27 33 49 5 41 25 11 3 45 21 35 9 47 19 29 37 51 15 31 23 7 1 17
51 27 23 5 9 37 33 29 19 43 21 41 51 25 15 47 17 45 3 7 I1 35 31 49 I
52 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26

Key: i). e. Qes/

L ..... -I
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?ages 73-74.
OcmHoBaune p=59U)
H H JeK l.

S2 6 810 11 13 14 18 23 24 30 31 32 33 34 37 38 39 40 42 43 44 47 50 52 52 55 56

o o o 0!0o 0 o0 0 0 0 0 0 0 0 0 0 0 o 0 0 0 0 0 0 0 0 0 0
2 1 33 39 25 7 49 55 27 31 23 57 45 35 41 17 19 3 11 13 37 51 43 53 9 21 5 15 47
3 50 26 36 32 2 14 24 16 42 48 8 46 10 30 38 22 34 28 12 52 56 4 40 44 6 18 54 30
4 2 8 20 50 14 40 52 54 4 46 56 32 12 24 34 38 6 22 26 16 44 28 48 18 42 10 30 36
5 6 24 2 34 42 4 40 46 12 22 52 38 36 14 44 56 18 8 20 48 16 26 28 54 10 30 32 50
6 51 1 17 57 9 5 21 43 15 13 7 33 45 3 55 41 37 39 25 31 49 47 35 53 27 23 11 19
7 18 146 44 10 12 4 22 36 8 40 56 50 42 16 52 54 24 22 28 48 20 26 46 30 32 38 34
8 3 41 17 21 31 49 23 35 11 55 19 47 7 51 57 9 33 39 53 37 13 43 27 5 15 45 25
9 42 52 14 6 4 28 48 32 26 38 16 34 20 40 18 44 10 56 24 46 54 8 22 30 12 36 50 2
10 7 57 41 1 49 53 37 15 43 45 51 25 13 55 3 17 21 19 33 27 9 II 23 5 31 35 47 39
11 25 13 47 45 1 7 41 37 21 53 33 23 5 39 19 11 17 43 35 55 57 31 49 51 3 9 27 15

* 12 52 34 56 24 16 54 18 12 46 36 6 20 22 44 14 2 40 50 38 10 42 32 30 4 48 28 26 8
13 15 35 15 23 25 1 39 55 3 49 13 53 9 47 II 43 19 31 5 41 33 21 7 57 17 51 37 27
14 19 47 45 11 17 3 1 49 9 31 39 43 27 25 33 13 57 35 15 7 41 5 21 55 51 37 53 23
15 54 50 38 8 44 18 6 4 54 12 2 26 46 34 24 20 52 36 32 42 14 13 10 40 16 48 28 22
16 4 16 40 42 28 22 46 50 8 34 54 6 24 48 10 18 12 44 52 32 30 56 38 36 26 20 2 14
17 10 44 52 14 48 46 54 36 22 50 18 2 8 6 42 6 4 34 56 :30 10 38 32 12 28 26 20 24
18 t3 27 53 31 11 19 45 i 57 3 15 21 55 23 35 5 13 9 37 25 47 51 17 39 33 41 7 49
19 38 36 32 22 34 6 2 40 18 4 20 28 54 50 8 26 56 12 30 14 2t 10 42 52 44 16 48 46
20 8 32 22 26 56 44 34 42 16 10 50 12 48 38 20 36 24 30 46 6 2 54 18 14 52 40 4 28

, 21 10 40 42 18 12 26 28 38 20 56 48 44 2 4 54 16 30 52 14 22 46 25 8 32 36 50 34 6
-- 22 26 46 28 12 8 56 38 6 52 18 32 10 40 22 36 30 20 54 48 34 501 6 44 2 24 14 42 4

23 15 31 5 27 47 39 13 57 1 55 43 37 3 35 23 53 45 49 21 33 11 7 41 19 25 17 51 9
24 53 9 37 49 23 45 15 39 19 I 5 7 57 27 31 21 43 3 5I 47 .13 17 25 13 11 33 41 55
25 12 48 4 t0 26 8 22 34 24 44 46 18 14 28 30 54 36 16 40 38 .2 52 56 50 ' 2 6 42
26 46 10 34 48 32 50 36 24 34 14 12 40 44 30 28 4 22 42 I 20 26 6 2 8 38 56 5216
27 14 20 50 38 6 42 14 48 10 28 24 22 30 2 56 8 44 26 36 .10 r2 12 4 16 18 34 46 32
18 20 22 26 36 24 52 ,56 18 40 54 :38 30 4 8 50 32 2 16 28 l 4 48 16 16 14 42 10 12
29 28 54 48 4 22 38 32 2 56 6 30 42 52 46 12 10 26 18 16 50 36 44 34 20 8 24 14 40
30 57 25 19 33 51 9 3 31 27 35 1 13 8 17 41 39 55 47 45 21 7 15 5 49 37 53 43 11
31 49 51 55 7 53 23 27 47 II 25 9 1 33 37 21 3 31 17 57 15 5 19 45 35 43 13 39 41
32 5 49 21 9 35 13 43 19 39 57 53 51 I 31 27 37 15 55 7 11 23 41 33 45 47 25 17 3
33 17 39 25 19 3 21 7 53 5 43 41 11 15 1 57 33 51 13 47 49 55 35 31 37 9 27 23 45
34 41 19 33 39 55 37 51 5 53 15 17 47 43 57 1 25 7 45 11 9 3 23 27 21 49 31 35 13
35 24 38 8 20 52 16 44 10 48 30 34 36 28 56 2 50 14 32 22 18 6 46 54 42 40 4 12 26
36 44 2 34 56 18 10 42 28 30 26 14 8 32 6 52 24 16 20 50 4 40 36 12 48 54 46 22 38
37 55 17 57 41 37 27 9 35 23 47 3 ;9 II 51 7 1 49 25 19 5 21 45 15 31 53 43 13 33
38 39 II 13 47 41 55 57 9 49 27 19 15 31 33 25 45 1 23 43 51 17 53 37 3 7 21 5 35
39 37 3 51 55 27 15 5 13 45 39 21 11 19 9 49 7 53 1 17 35 31 25 47 43 23 II 33 57
40 9 7 3 51 5 35 31 11 47 33 49 37 25 21 37 55 27 41 1 43 53 39 13 23 15 45 19 17
41 14 56 24 2 40 48 16 30 28 32 44 50 26 52 6 34 42 38 8 54 18 22 46 10 4 12 3620
42 11 15 23 43 19 17 25 7 51 21 47 1 37 45 13 35 33 5 27 i 39 9 3 41 57 55 49 53
43 33 45 II 13 57 51 17 21 37 5 25 :;5 53 19 39 47 41 15 23 3 1 27 9 7 55 49 31 13
44 27 21 9 37 15 47 35 33 25 41 31 55 17 5 53 49 23 7 3 13 43 1 39 Ii 45 19 57 51
45 48 18 16 40 46 32 30 20 38 2 10 14 56 54 4 42 28 6 44 36 12 34 50 26 22 8 24 52
46 16 6 44 52 54 30 10 26 32 20 42 24 38 18 40 14 48 2 34 12 4 50 36 28 46 22 8 56
47 23 5 27 53 45 25 47 41 17 7 35 *9 51 15 43 31 11 21 9 39 13 3 I 33 19 57 55 37
48 54 42 18 16 30 36 12 8 50 24 4 7,2 34 10 48 40 46 14 6 26 28 2 20 22 32 38 56 44
49 36 28 12 30 20 24 8 44 14 16 22 o4 42 26 32 47 50 48 4 56 38 40 52 34 2 6 18 I0
50 13 23 43 35 33 57 19 3 55 9 48 5 49 11 47 15 39 27 53 17 25 37 51 I 41 7 21 31
51 32 12 30 46 50 2 20 52 6 40 26 48 18 36 22 28 38 4 10 34 8 42 14 56 34 44 16 54
52 47 43 35 15 39 41 33 51 7 37 II 27 21 13 45 23 25 53 31 57 19 49 55 18 1 3 9 5
53 22 30 46 28 38 34 50 14 44 42 36 4 16 32 26 12 8 10 54 2 20 18 6 24 56 52 40 48
54 35 53 31 5 I3 33 11 17 41 51 23 9 7 43 15 27 47 37 49 19 45 55 57 25 39 I 3 21
55 31 37 49 21 43 II 23 25 33 17 27 3 41 53 5 9 35 5I 55 43 15 57 19 47 13 39 1 7
56 21 35 7 3 31 43 53 45 13 19 37 17 39 49 9 51 5 57 41 23 27 33 11 15 35 47 25 1
57 30 4 10 54 36 20 26 56 2 52 28 16 6 12 46 48 32 40 42 8 22 14 24 38 50 34 44 18
58 29292992929 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 '299292929.-299

Key: ('). s/ base.
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VI OcnonaHe p=61

CAHHtexcb

q 2 6 7 10 17 28 26G 30

1 0 0 0 0 0 0 0 02 1 43 49 47 23 37 41 29
3 6 18 54 42 18 42 6 54
4 2 26 38 34 46 14 22 58
5 22 46 58 14 26 34 2 386 7 1 43 29 41 19 47 2.3
7 49 7 1 23 47 13 29 418 3 9 27 21 9 51 3 27
9 12 36 48 24 36 24 12 48

"M 10 23 29 47 1 49 11 43 711 15 45 15 45 45 45 45 4z
12 8 44 32 16 4 56 28 52
13 40 40 40 20 20 40 20 2014 50 50 50 10 10 50 1o 10.
15 28 4 52 56 44 16 8 32
16 4 52 16 8 32 28 44 56
17 47 41 23 49 1 59 7 43
18 13 19 37 11 59 1 53 1719 26 38 14 22 58 2 46 34
20 24 12 36 48 12 48 24 36

ol 55 25 r~ 51.; I
22 16 28 4 32 8 52 56 44
23 57 51 33 39 51 9 57 33
24 9 27 21 3 27 33 9 21
25 44 32 56 28 52 8 4 1626 41 23 29 7 43 17 1 49
27 18 54 42 6 54 6 18 4228 51 33 39 57 33 27 51 39
29 35 5 35 25 25 35 55 55
30 29 47 41 43 7 53 49 131 59 17 11 13 37 23 19 31
32 5 35 5 55 55 5 25 2533 21 3 9 27 3 57 21 9
34 48 24 12 36 24 36 48 12
35 11 53 59 37 13 47 31 19
36 14 2 26 58 22 38 34 46
37 39 57 51 33 57 3 39 51
38 27 21 a 9 21 39 27 3
39 46 58 34 2 38 22 26 14
40 25 55 25 35 35 25 5 541 54 42 6 18 42 18 54 6
42 56 8 44 52 28 32 16 4
43 43 49 7 41 29 31 23 47
44 17 11 53 19 31 29 37 13
45 34 .22 46 38 2 58 14 26
46 58 34 22 26 14 46 38 2
47 20 20 20 40 40 20 40 4048 10 10 10 50 50 10 50 5049 38 14 2 46 34 26 58 22
50 45 15 45 15 15 45 45 45
51 53 59 17 31 19 41 13 3752 42 6 18 54 6 54 42 18
53 33 39 57 51 39 21 33 57
54 19 37 31 53 17 43 59 1155 37 31 13 59 II 49 17 53
56 52 16 28 54 56 4 32 8
57 32 56 8 4 16 44 52 28
58 36 48 24 12 48 12 36 24
59 31 13 19 17 53 7 11 59
60 30 30 30 30 30 30 30 30

Key: (1). Basis/basr. (2) . Indices.
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Page 77.

Chapter 3.

BASES 3F MACHINE ARITHMETIC IN A SYSTEM OF RESIDUAL CLASSES.

§3.1. Rank of a number and its prcperty.

Let be preset the system with bases/bases Pi, P... P-, range of

which O is defined as

[I Pi.
i-il

As is known, any number A frcm range [0, ) in a single manner

can be reprosented in the form of remainders/residues on the selected

mutually simpla bases/bases, namely:

A =1a1, a2 ... . ).

To the praset system of bases/bases unambiguously corresponds

the system of the orthogonal bases

Bt, B2, .... Bn,

of such, that the value cf number A in the positional numeration

-A - .f



DOC =81023904 PAGE

system can be represented as

A~ azi8 (mod 31) (3.1)

or, which is the same,

A- ,Bj -rA J, (3.2)

where rA positive integer number, which shows, how often the range of

system 91 was exceeded upon tran~sfer from the representation of a

number in the system of residual classes to its positional

representation through the system of orthogonal bases.

Page 78.

Positive integer number rA we will call the true rank or simply

by the rank of number A.

Let us formulate the theorem about the rank of the sum of two

numbers.

Theorem 3. 1. (about the rank of sum) . If in the system with

bases/bases P,, P2. Pn and range p preset two numbers:

A= ((XI, a2; . a,, ad B(, *.Pa with ranks rA And rB respectively,

then rink r*4+B 3f the sum of these numbers will be defined as

rA+B~A~rB Mi,(3.3

P1I
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whern mi- the weight of orthcgonal base Bj.

Proof. Let as write in accordance with (3.2) expressions for

numbers A and B:

A= ( Bi-rAP,

B = P Bt -rO .

Adding A and B, we will obtain

A+B=. (a+ , +) B--(rA+ rB), (3.4)

on the other hand, on the basis of the rules of the calculation of

the sun of two aumbers we can write

or in the form (3.2)

A -- = (ai -," ., i AB - 35
t= P

Page 79.

We convert this expression
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I (ai Ai)Bj- m,3-r,,B. (3.6)

Equalizing right sides (3.4) and (3.6), we obtain assertion (3.3) of

t he orem.

Obtained arprasston (3.3) is the findamental principles, which

' makes It possible to count the rank of sum on the ranks of

compongnts/torms/aidends. It is obvious that = I if

' {i - ,and. a'i-1 0 otherwise.
P P1 J

Logical to assume that frequently the determination of rank will

be produced directly in the process of 3xe--uting the operation, being

its essential pirt. Therefore let us consider one, of-the possible

methods of detrminng the rank dithout the transition to the

epositional representation of a number. Let us designate through

the minimum from numbers of the fors

(0, 0, 0... 0, intotherw

is obvious, this aill be represented in the adopted system number,

equal to the product of the followinf bstis of system:

Thus,
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M', = (1, I1 ... )

M2 = (0, p, P .... p),

M3 =(0, 0, pip,(modp3 ) ... , pip.(modp,)) &4 so fook.

Let A(,,.:.., ar) be the number whose rank rA should be computed.

Numbers M and their ranks ri we assuea/sat by known ones, since

they are determined only by the basis of system. We will to number A

adjoin number M, as many times, as will be required so that the digit

of number A on basis/base p, would become equal to zero.

4.

Let us assame that fcr this was necessary k, times to adjoin

number H1 , and as a result of addition was formed number At with rank
FrAl

A, = A + k1Mi.

Page 80.

Then applying consecutively/serially k, tizes formula (3.3), ws will

obtain

rA4 = rA4 + ) 1 ,

where w, - known to us value,

Lot us now move on to the second stage of procedure. Let us

produce the analogous additions k 2 of times of number M2 to number At

before obtainiag of zero remairder/resilue with basis/base P2. [n

.L'k-g
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this case we will obtain number A2 with rank rA:

A. A, + k2M..

Applying consecutively/serially k2 times formula (3.3), we will

obtain

where W 2 " known to us valuo,,

Continuing this process on all digits of a number, as a result

we will obtain the number (0, 0, 0.., 0) , equal to p, rank of whi=h,

as can easily b3 soen, is equal - 1. on the other hand, the

calculated rank of this number is equal to rA+On, whence it follows

that
r A  = -O.- .(3.7)

Let us giv3 the example, which illustrates the method of

determining the rank of a number examined.

Lit us selact system of calculatio2 with bases/bases pt=3, pa-S,

p3 =7. tn this case the range of system will be equal to f=3-67=105.

The orthogoal bases of system are defined as B1 =70, B2=21,

B3=15, and their weight with respect to kA mt=2, m2 =1, 23=1.

7~r the selected system we write the minimitm numbers:

MI =(I, 1, 1), M2 =(O, 3, 3), M3 =(O, 0, 1),
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ranks 3f which are equal to
ri ,  r2 ]'. r3- 0.

Example. T3 find rank rA of number A-(1, 1, 5)=61.

Let us sum number A with M,
- (1, 1, 5)+ (1, 1, 1)=(2, 2, 6)..

Transitions through the bases/bases it was not; therefore the rank of

sum will be defined on (3.3) as

r =rA 1

It is repeated the procedure indicated again

(2. 2, 6) + (1, 1, 1)=(o, 3, 0).

In this case occurred the transitions through bases/bases pt=3, p2 =?;

therefore

r=rAI-121=rA-

Page 81.

Let us now move on to the transition into zero digits on the secoal

basis/base with the help cf number Ma

(0, 3, ()+ (0, 3, 3)= (0, 1,3).

In this case o::urred overfilling on the second basis/base. Therefore

the rank of result will be equal to

It is repeated the addition

(0, 1, 3) i-(0, 3, 3) -(0, 4, 6).
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Transitions it vas not. The rank of a number will be

We continue ths process

(0,4,6) +(0, 3, 3)= (0, 2, 2).

Transition occurrel through bases/bases p2 and p3, i.e.,

And, finally

4I

(0, 2, 2) - (0, 3, 3) =(0, 0, 5).

We here have an overflow on the second basis/base

r=rA - l+ =rA-

Let us switch over to transition into z~ro digits on basis/base p3

(0, 0, 5)+(0, 0, 1) (, 0,6).

Transitions it was not

r=ea-L."

It is repeated the addition

,(0, 0, 6) +(0, 0, 1) (o, 0, 0).

In this case

r rA--1 = rA 2.

In acc~rdance with (3.7) we will obtain

rA 2 - ,

whence rA-, Actually/really, the rank of number A. determined

according to (3,2),

A= 1 +B82 +58, 166-1.105

is equal to rA.

AJ
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The given above method of determining the rank of a number by

consecutive additions with preset minimum :odes M can be

simplified, if ve have in the storage of machine codes, multiple

minimum, and their ranks. Then it is possible to conduct the

calculation of rank by consecutive subtractions in n procedures.

Page 82.

Definition. The rank of the number, which is the result of

arithmetic operation, obtained from the ranks of operands is called

the calculated rank of a number.

It is logical that if the operation is performed correctly, then

calculated rank and true rank of result during the comparison will

prove to be identical.

As it will be proved further, the calculation of the rank of

result with the execution of the cperation of addition and its

comparison with the true rank 'of result make it possible to

establish/install the fact of output/yield or nonappearince of resalt

from range to, d),. i.e. the fact of overflow.
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Let us considar some examples in the system with bases/bass

pl=3. p2=5. P3=7o

Example. To sum number A=(1, 3, 2)=58 rank of which rA-=I, with

number B=(1, 1, 2)=16 with rank re =. We store/add up

.4 B = (1. 3. 2) (1, 1, 2) - (2. 4, 4).

The ra. k of sum will be r+ I+ 8 2. As it is easy to check, the true

rank of number (2, 4, 4) is equal to 2. Thus the calculated and true

ranks of result coincided, therefcre, overflows was not.

Example. To sum number A=(1, 3, 2)=58 with number B=(1, 3,

2) =58. Here rA=r . We store/add up

A -- B = (I, 3, 2) (1, 3, 2) (2, 6. 4).

Rank of sum fA+ =I+--I=l. The true rank of number (2. 1, 4) is

equal to 2 and does not ccincide with the calculated rank, which

means, occurred overflow. Is actual/real, A+B=58+58=116>105.

§3.2. 3n the expanded representation of numbers.

Until now, number A in the system of residual classes was

represented in the form

Let us introduce now the representation of a number in the form

A' =( a 1 + (I -) ( -P) ... ), + (I --. ) ( --P,)),
(3.8)



77
DOC z 81023904 PAGE

where X, (i-=, 2# ... 0 n) can be equally either I or 0.

Representation (3.8) subsequently we will call the expanded

representation of number A.

Ordinary representation corresponds to the case when everything

= 1. If 11 -0, then the corresponding Aigit cf a number will be

negative. Relative to the expanded representations occurs the

following theorem.

Page 83.

Theorso 3.2. In the system with bases/bases P1, P2 .., p.. by range

Jf and orthogonal bases B1, B2.  B, with single weights of

M1 = m2  .. M for any number A by rank r*t there is an

expanded representation of zero rank.

Proof. In reality, after placing

0. "

and others X,=I, we will obtain on (3.8)

A'= 21 .P...... 2'-1 ..... . - p,.

Let us present this number in its disintegration in terms of the

orthogonal bases

' = aB, + %2.B: +.. •+ ,1B + •••- ,,.B -

+ z,,B, - (p,=Bj + p,,B,, + • • "- PiAB ,A)•
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Since we selected the system of bases/bases for which p1B=1, that

A'= "1 B 1 + .B2 +. + -B. - rd= A.

T is expanded representation of a number we will nane the

principal expanded representaticn.

Corollary 1. The rank of a number is equal to a quantity of

negative digits in its principal expanded representation.

Corollary 2. The maximum rank of a number does not exceed a-1 (n

- order of systam). This escape/ensues from the fact that all digits

of principal fixed expansion cannot bo negative, at least one 3f the

digits must be positive. Thus, principal fixed expansion of a number

can contain not more than n-I negative Jigits.

Corollary 3. A maximally possible rank for the number, which has

k of zeros, does not exceed n-k-1.

The upper limit of the value of the rank of a number can be

somewhat loverui. This possibility is determined by the following

theorem.



DOC 81023904 PAG,

Theorem 3.3. h maximally attainable rink of number A in its

principal expanled representation does mot exceed n-2.

Page 84.

n Proof. The proof of this theorem must consist in the

19monstration of the fact that by one positive digit cannot be

gathered the positive number in the principal expanded

representation. In reality, let A = (a,, a2.  an) be a number with the

greatest possible rank and we found such principal expanded

representation R', in which Xi= 1, and the others

XL0,
1= , 2,. .. n ==

:Then

A' = jBj- ((p, - at) Bt + (pz- a,) 82 +..

+ (pj --- aj-t) B-t + (pj+ - aj+) Bj,+ +
..+ (p.-x,) B,). (3.9)

It is obvious, A' will be greatest, when positive

components/terus/addends are greatest, ind negative -smallest in the

absencs of zero digits, i.e.,

Then

A' =,V- (B + B2 + . B,) ( - + 1) -1.
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Ve& nwhile8 A =(p - 1, P2-I .,-)O- and, thus, (3.q) it is n~t

the main thing they are expanded, by representation A. The latter

will be obtainel, if we preserve in A' by positive one additional

Aigit, that als3 is claimed under theor:. condition. Then wiii occur

the equality

Let us take nov as the orthogonal bases of the value:

B = (kt, 0, 0, .. ,0), (.0
4, B2 =(0, *2, 0, .. ,0), (.0

where k, can hive values 1, 2, ..,pi- 1 for i1, 2, ... , me.

Lat in the salected system of baSe3/bases be is preset number

Page 85.

Let us select vAlues , ,..., in such a ray that would occur tha

f ollowing comparisons:

k, , g (mod p,),
k22a (mod p2),

k. %, (mod p.)

o r
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Xj (mod p1),

. . ..(3.12)

L(mod p.).

Let us name the expression

the invqrse representation of number A, and the constant value

-by gate of inverse representation.

Between the integers of range Lio, jP and th-3 inverse

representations of these numbers (3.13) occurs one-to-one conformity,

since from (3. 11) , (3. 13) and (3. 14) we have

AK=-A (mod 81)

or A~4(mod 81).

rt is obvious thiat the in question, unttl now, representations of

numbers in the form of remain derts/residue s on the selected

bases/bases of the form

are also the inverse representations of numbers with the gate

Sines k 'O (i= 1, 2, .. ,n), then as t he gates of dif ferent inverse

reprasentations zaft serve fl(p, -1) different numbers of the range
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10, eT) and there is respectively as many different inverse

representations of numbers and so mary the systems of orthogonal

bases.

7 Let us agree that to negative digits a,-Pi in the expanded

representation :orrespond negative digits X-p, in the inverse

representation.

Among the gates of inverse representation is a gate of the form

~K -- (1, 1, 1. . ).

This follows fram (3. 12) when c,=X

Page 86.

The value of jate is determined by the expression

K= Bi-rha, (3.15)

where rk - rank of gate or respectively

TB, (od 8).
i-,I

Thus, in the system of residual classes are possible the various

forms 3f the representation of numbers, differing by greater or

smaller simplicity.
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The given har3 expanded and inversa representations carry mors

complicated character, but make it possible to minimize the maximum

value of true rink numbers, which in a number of cases can prove to

be useful, taking into account nommodularity of rank.

§3.3. Numerical sequences and the ranks of their elements/cells.

Lat us consilar some questions of listribution in interval

[0 )of the members of the sequence

a , ,..., ai..1, S, at+,, an) . ,

As can be seen from (3.16) the members Df this sequence differ from

each other only in terms of their digit in base Pi.

Lemma 3. 1. In the system wit h ba ses/ba ses p,, p:,.p,. by

orthogonal bases B1, B2, .,, of weight of which respectively

ml1 , m2 . m and range 9P= UJp, in each of the intervals

j= 1, 2, i ,

of ringe gs is zontained according to one number of sequencea.

Page 87.
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Proof. Is actual/real, since

where m,<pj. that the difference betweem two mnembers of sequence ajj

and ai, ranks of which are respectively equal to ri ani rz will be

defined as

ais, - ais, (S' - S1) mi 8r - 1 . (3.18)

So that ai,, and ais, would lie/rest at one interval, it is

necessary that there would be such integer k, for which occurs the

equality

i.e. so that the value

would be integer.

since pA - prime number, and fj <-Pi and S2 - S' < Pi, the 1 Cannot

be intage. Consequently, equality (3.19) is impossible. This means

that any two numbers of sequence (3. 16) are located in different

intervals (3.17) . Since in all terms in sequence p, and as many

different intervals, then in each of these intervals it is contained

on one member of sequence.
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Corollary. Amuong numbers a~s of sequence (3.16) is contained only

one number a,,. such, which pG,, lies/rests at interval 10,9').

In reality, from determination aj, in interval (3.17) follows

determination plais in interval: 0 1 ',IO).

In particular, assuming/setting 1=1, we come to formulated in

the corollary assertion.

Lasma 3.2. If one of the numbers at,, with rank r, of the

namerical Sequence

at, = (a,, a2 .. Ii S, a1.1. all,

wherg S=O. , lip.., ps-I, is located in the interval

the number at,,j with rank rwhere t)0. is located in the interval

Page 88.

Proof. In accordance with (3.18) %a can write

ai(sl+t) -at., + tmi (rt r,) .
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Since t>O, then the border of the interval in which is located ai(i+i),

they are obtainad by addition te the borders of the interval in which

is located ai, value

-: "V
PI

ani by thq excaptior./elimination of a possible number of full waves

(depending on values ia), that alsc is reflected in (3.20).

4i Crollary. If member ais of sequencs (3. 16) is situated in the

interval

P I{L (i-I)-i, j

then in the following interval

P- (u + 1)W,

is located number aisL, where

SS p+ -+I (3.21)

Here through 1:1 is designated the integer part of the expression

&ctually/really, assuming/setting in (3.20)

+! =I + tm -4 p,

we will obtain that

aP + , (3.22)
MI
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that also proves tha assertion of corollary.

From (3.22) it is evident that mi tust be the

divider/denominator of value XQp 1 -I rn a number of cases this can

occur 3nly at the unique value of value 'j,. In particular, when

*m 1l must be X=oand then t=1. In other words if mIthen

a1, and al(.+l) are located in the adjacent intervals.

Page 89.

Lemma 3.3. The members of numerical sequence a131 and ai,, of the

identical rank r,=r,2=r satisfy inequality a111<au.,, if is satisfied

the condition S1<S2.

Proof. In accordance with the conditions of lemma expression

(3. 18) can be rewritten in the form

i~e. with 5 2 >S& we will obtain ats,>a1,1 , that also is the assertion of

lemma.

Lamma 3.4&. If the members of numerical sequence ais1 and ai~ with
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ranks v, and r2 cespectively satisfy the inequality

af., > ai.,

then their ranks they satisfy the inequality

Proof. From the condition of lemma it follows that

or

Let us assume that inequality (3.23) does not occur, ie.,

rz -r 1 >m 1 _-

or

r2 - r,> i.

But then from (3.241) it follows that

S. - St> pi

which is impossible. It remains to take the assertion of lemma.

C3roIllary i. If a,>'i, then with single weight mj=I of

orthogonal base Bt lesser numbers have not smaller ranks: rz%<ri.

In this case the greatest rank has the smallest number, i.9., a

number, which is located in interval [10, :f)

Corollary 2. A difference in the rinks of any two numbers of the

examined numerical sequence in the absolute value is less than the
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weight m, of thi corresponding orthogonal base.

Page 90.

Theorem 3.4. If are preset the membors

al0, ail, ... , ai(,...1), ase, ai(oe,) . .), ai(p, 1)

of the numericaL sequence of the form

, ai, . (' . "'.' ..., " -sS, ai+1, a.. n),

where

S=O, 1, 2 . .. , pi-1.

and if when m 1 .I a minimum number of sequence is at,. with rank r* ,

then terms a,0 , ail, ... ai(,,t) have ranks, egual to r*-1, and terms a,*,

a(,-..t). ...... ai(p,_t) have early hours they are equal to r*.

Proof. Actually/really, since m;=1. that any numbers ais and

ai(,+l) are located in the adjacent intervals. In other words number

ai(,+t) is obtained from ai. by the addition of the number

B1=(O, 0, ... , 0, 1, 0, ... 0),

of that having zero rank.

If aj. is a minimum number of sequence with rank r*, then it is

located in interval [0. -) and, therefore, a,,,,,, is located in

interval [f, 2f) ,ai(s+ 2 1 - in interval 2.3 and so forth.

until S"-p<pj, all. numbers

a4+, ~l~e~), ••,ai(se+p)
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to p p,-S'-I ire have a rank r* since they are formed by addition

with number B, of zero rank, morecver nowhere occurs transition

through Pi, whi=h it could change rank. It is a different matter when

p = Pi-S. Number air,.._o) = a,0 will already have a rank r*- 1, since

luring the addition with B, will occur the transition through Pi.

which will determine decrease per unit of the rank of sum. Rank r*-1

they will have ill numbers from aj0 to au,.-).

Corollary 1. If S*=O, then in the numerical sequence all numbers

have ilentical Canks. Actually/really, in this case with the

formation/educition of the next members of sequence by additions B,

there is nowhere transition through p, in other words there is no

derating that it could change rank to that or other side.

Page 91.

Further continuation of sequence with aldition Bi to a. ,-,) leads to

ajo and it is conjugated/combined, on one hand, with derating, what

increases true rank in comparison with the calculated per unit, and

on the other hand - with the transition through pi. which reduces the

rank par unit. Th3 combined action of these two factors leaves the

rank of number a10 without the changes.
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Corollary 2. Let Z, indicate the sun of all members of sequence

(3.16). Then during calculation Z, they take place O1-1 of derating2

[0, T).

In reality, we have

ai - ai(, _)) = ai,, + p

let us compute 1-

pi-I P;-i --

a, aim.- Y, ppa,..-
=0 S-0 0-0

Since pja 5. liss/rists in the range f0, l), then in all during

calculation L' they take place Pi-I of derating.

2

Determination. System with bases/bxses P1,P. ..... p,, by range 9 ,

O =f Pg, by orthogonal bases B2. .. , B., of weight of which is

respectively equal to a,, m2, ..... mn, we will call
standardizod/nocealized on basis/base P, if occurs condition

mi eeie=1, 2 e ... t n o.

if system is calibrated on largest basis/base, then this system

of bases/bases we will call the simply standardized/normalized

systas.
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Theorem 3.5. If in the standardizel/normalized on basis/bass p,

system of bases/bases is known rank r: of sum M, of all members of

numerical sequence, then minimum member as, . of this sequence and rank

his r* are defined as the integral solutions of the indeterminate

equation

p*- S*= r-,.+ [PiI (3.25)

where 6 is determined through the total number of transitions on all

bases/bases, which occur during calculation "+. i.e.

t Pj 1n.

Page 92.

Proof. Sin-. in the sequence in quastion there are by S* of

numbers of rank re-1 and p,- S* numbers of rank re * about according

to corollary of 2 3.4 to the theorem about the rank of sun we have

which after simplification brings to (3.25).

Observation. Since S <pi, the equation (3.25) has the unique

integral solution, which is determining unknown S* and re.

" ''10
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Lot us consider some examples for the system of the bases/base's:

p,:3. p2= 5 . p3 =7, the illustrating properties of numerical sequences

presented.

Example. L3t sequence a take form (2, 3, 0), (2, 3, 1), (2, 3,

2). (2. 3, 3). (2. 3, 4), (2,.3, 5), (2, 3, 6). i.e., its terms in

the value are equal to:

a 3 =98; a =8. a3=23, a3-38, am=53, a,=" 68, avq- 8 3,

and the ranks of them respectively:

r3D=- 1, rj =2, r , = =2. r3=2, r4=2. r3s=2, r,=2.

Since here S*=1 that the rank of nambers from (2, 3, I and d

(2, 3, 6) is equal to 2, and the rank of number (2, 3, 0) is equal to

1.

Example. Lot sequence a3 take the form

(2, 4, 0), (2. 4. 1), (2, 4. 2), (2. 4, 3). (2. 4, 4), (2, 4. 5). (2. 4. 6).

ac-=1 4 , a2 1=29, a.=44, an=-59, au =74. an=89. a 5 =104.

Here S*=O and all members of sequence have one anl the same

rank, equal to 2.

Example. Is knovn rank rz cf number (1, 3. 0). lumber (1, 3, 0)

can be obtained Is sum Z1 of the members 3f sequence (1, 4, 0), (1,
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4, 1), (1, 4, 2),, (1, 4, 3), (1, 4 , 4) * (1, , 5), (1,4 , 6) than

equation (3. 25) of signs the form

.7r*--S = 10,

whence we obtain ro=2, S*=4.

Actually/rually (1, 4, 4)=4 there is a smll number of this

sequence and its rank is equal to 2.

Theorgm 3.6. If in the standardized on basis/base Pi system with

the odd bases/bases two members at(,?- and aq. of the numerical

sequence

S=1, . p,-1

have identical parity, then term a.q is the minimum member of

sequence, i.e., q=S*.

Page 93.

Proof. Sitem all basis of system are odd, then is odd value

P,

If ve the rank 3f number a<q.,i designate through rs, and the rank of

number a,q - through r ,. then according to (3.18) we have

a,q -a,(,-_, = - (-i -r,) i'.
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If one assumes that rz=rl then it will seem that a difference in two

numbers of identical parity is odd, which is impossible. Hence C2/r 1

which is possible only when q=S* i.e. term ajq is the minimum term of

numeri::l sequaacs in question.

§3.4. orthogonal and pseudo-orthogonal numbers.

Nambers, im which all digits zero, with exception of digit on

basis/base Po, i.e. numbers of form

A =(0, 0, 0 , ,.., 0 . 0), (3.26)

we will call orthogonal on basis/base Pt numbers. During the

calculation of the true rank ef a number it is most logical it would

be logical consider number A = (al, a2. CC,) as the sum of its

orthogonal comp)ments, and the rank of number A to compose as the sum

of the ranks of these components. However, this path does not reach

target, since with the addition of orthogonal components can take

place beyond tha limits of range (0, 0), the not catched in the process

additions. Specifically, these possible outputs/yields for the range

substantially will influence the value of rank. Therefore it is

considered by alvisable to find such standard components whose ranks

would be previously known so that the number A would be represented

by the sum of these components and so that with the addiltion it would
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not be outputs/yields beycnd the limits of range 10, &). It is
I

obvious, theser- o mponents must be sufficiently small.

Such standard components subsequently we will call

pseudo-orthogonal numbers.

Page 94.

Determination. Pseudo-orthogonal numbar A on basis/base Pi is

called such number which is obtained from orthogonal number A,, if we

in it break orthogonality on any basis/base (for example, on p,), i.a.

a number of form

Ai=(O, 0 .... 0, a, 0, ..., 0. S1 )=, -B,- B,. (3.27)

Ih is possible to examine the pseulo-orthogonal numbers, in

which the ortholonality is broken on any of the bases/bases; howevar,

we subsequently for the certainty will always examine

pseudo-orthogonal numbers of form (3.27) . This not at all breaks the

generality of examination, since by p, --an be implied any of the

basis of system.

Extending property of numerical sequences to pseudo-orthogonal

numbers, let us find the number

ylin (0. 0.a0. S. (3.28)

lying at interval [o,
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Such numbers subsequently we will Tall minimum pseudo-orthogonal

numbers.

Digit s! on basis/base p,, with which a pseudo-orthogonal

number has minimum value, i.e., it falls into interval O, , we

will call the trace of pseudo-orthogonal number , Let us generalize

the concept of the trace of a number.

Let to us be is preset number A=(a,, a2, .a ) Digit SI On

basis/base Pn such, with which the number

A* - (a,, a2' . . -, , S*)

is locited in latacval L0, i). will call minimum of the traces of

number A.

Number A* whose digits in bases/bases Pl, P,, .o. p-, coinciI9

with the digits of number A, and digit on basis/base Pn is minimal

trace of number A. we will call the minimum form of number A.

Let us estiblish/install some properties of minimum forms.

Page 95.
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Tleoram 3.7. If in the standardizei/normalized system are

represented two numbers:

A, ,...-n- an

minimum forms of which are

.~ (a a -.. , ,-I, S.A'),

but the minimum form of sum A*,--A: takes the form

(A-A*)( 1 , Yz 2. y-i* S)

then the minimum trace S* of the sum of tha minimum forms of numbers

A, and A2 satisfies the relationship/ratio

S, -- S*,- (rnodp,) S*<S,,. S,(nlo p],). (3.29)

Proof. Since according to the condition of theorem i., - . them

value --- can be represented as

__ = qp -,
Pn

where g - positive integer number.

Let us present numbers A*, and A** in the form

A* = qtp, + SI,
A*. = q2Pn - SI,,

where q, and q2 - whole non-negative nuibers.

Then on the strength of the fact that A*t and A*2 are Minizum

forms, occur tha inequalities
q, < q,
q2 < q,
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indicating the letermination Of numbers A* and A*,, ilk interval

Sum A* I an' A*2 Can be pre'sented in the formu

let us consider the Possible relationships/ratios between sum of

ql.q 2 and value q.

Case 1.

At this case sum A*1IA*2 lies/rests at intarval iP e i

is minimum and, therefore,

(S*A1 ± SI,) (mod P.) =S*.

Page 96.

Case of 2. qi~qa.+fSPiS" >q.

At this c&39 sum A*, +A* 2 lies'/retOs at interval [n.2.-j i.e.

the minimum for! of sum A*1.A*2 differs from value A*I.A* 2 by value

8/p"~ i.e0.
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(q,+ 2 S42 ] q) pm +

Vhence

(SA., + S~ 1) (mod Pm,) =S'.

Both the cases examined are reflected in relationship/ratio

(3.29).

* The obtained result can be spread to any number of

components/teras/addends, for which let us formulate more

general/more common/more total theorem.

Theorem 3.3. If in the standardizedi/normalized system are

reprasanted numbers A,...,A,,, minimum forms of which are

A.)! S!4.)2

and if the minimum form of sum Zftakes the form

Z~ Aj) (YI, Y , Y,'-1,S

the minimum trace of the sum of minimum forms satisfies the
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relationship/ratio

I_ S*,, - m + I (m od p . ) s l Sx j S O, l (m od p. ) . (3.30)

Theorem is proven (r-i) by the -- fold use/application of previous

theorem 3.7.

Let us consider some thecrems about traces and ranks of minimum

pseudo-orthogonal numbers.

Page 97.

Theorem 3.9. If in the standardized/normalized system is preset the

minimum pseudo-arthogonal number

with rank ra, then its trace S:. is defined as

s o r ( ipi,- _cim ) Pri
P(3.31)

Proof. The value of minimum psoudo-orthogonal number M=, can be

registered in the form

In accordamce with the determination of a minimum

pseudo-orthogonal number, Mr, is located in interval [0,---), i.e.

Pp
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or

r . , O < , m -7 ;-i S ., <.- -

whence

.(ra, i P- imJi) P (r, i - (Xiti) Pn

APiai< P

since S, - numerical number, then it can satisfy the obtained

inequality only at the value

- (r. Pi -Mimi) Pn
: Pt 3+1,

that also is th I assertion of theorem.

Theorem 3.10. If in the standardized/normalized system is preset

the minimum pseudo-orthogonal number
Mal = (0, 0 .. .. i .. . , Sad ,

then its rank rxz I determines by the expression

P i 1 (3.32)

Page 98.

Proof. From expression (3.31) for S, it follows, on one hand,

that
trztpI - rAint > 0,

i' - 0,

r=, -- -t '(3.33)
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and on the other hand, since S*<Pn,

i.e.

r, < .(3.34)
"-1

since r=* - whale, then the only possibility to satisfy

simultaneously ralationships/ratios (3.33) and (3.%34) is execution

(3.32).

,i
Corollary. A minimum pseudo-orthogonal number with digit ai, to

equal unity, has single rank.

A-tually/r3ally, since [-]i=0, that Theorem 3.11. if

in the standardized/normalized system is preset the minimum

pseudo-orthogonal number
Mr,.= (0, 09 .... I ai ..... 0, SC-L)

with rank ra, amd the minimum pseudo-orthogonal number
, PI_04 = (0, O, .... t PI- = .... 0, S~_=z),

with rank rp -a9, then the ranks of these minimum pseudo-orthogonal

nubers are connected with the relationship/ratio

r=,+rp,_f, . mI+ , (3.35)

and their traces satisfy the relationship/ratio

Solt + So,,-., = p. -. (3.36).

Proof. Let us count the sum of the ranks of numbers ,l42: and

MPI-6e:
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r~i r~_,l=.-+- m + 2--1Lpu Pt JPu

In accordance with the fact that the integer part "x] of the

fractional number x satisfies the relationship/ratio

1xI + ["--xi = - 1,

we will obtain

," ra + r,,_-,, mi +!.

*Page 99.

Lot us count now the sum of the traces of qi+q2+ P

pseudo-orthogonal numbers in accordance with (3.31):

(rt P p-- imi) Pn

+ (rp, -_Pt -(Pt i) mdin I+P1

Corollary. If a1=1, the minimum pseudo-orthogonal number My_-

for the further ligit on basis/base p, has a rank, equal to mi.

Is actual/real, on (3.35) rp1.-1-m,.

Example. Lit us consider the system of the bases/bases:

p 2 , p2-= 5 , p3 7, p.=2 3 . I 1610,

LA
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let us count orthogonal bases and their weights

L1 = = 805; m = I,,

3.1610

B2=- -- 0 =966; m2-- 3.
.- 6. 1610--

B3= 1380; m3 -6,

1610B4 = -- 0: m4 = 1.

F~r the adoptad system let us give tha values of minimum

pseudo-orthogonal numbers and their ranks:

on basis/base p1= 2

(1, 0, 0, S,,) -(1, 0, 0, 12) 35, 1 ;
,4

on basis/base pz=5

(0, 1, 0, S*,)=(0, 1,0, 10)=56, r 1, .
(0, 2, 0, S*)=(0, 2, 0, 19)=42, r2=2.
(0, 3, 0, . )== (0, 3, 0, 5) = 28, r3 =2,
(0, 4, 0, S&,)=(0, 4, 0, 14)= 14, r4=2;

on basis/base p3=7

(0, 0, 1, S.*,) - (0, 0, 1, 4) = 50, ri = 1,

(0, 0, 2, S.=. (0, 0, 2, 7)=30, r2=2,
(0, 0, 3,SA= (0, 0, 3, 10)= 10, r3 =3,
(0, 0, 4, S*=a) = (0, 0, 4, 14)=60, r4=4,
(0, 0, 5, Sa-) - (0, 0, 5, 17) =40, s =5,
(0, 0, 6, s )=- (0, 0, 6, 2D) mo, ,,=6.
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Page 100.

here valueEs S(*xL ird r were calcula.tedi respectively acsr~i tKformulasc (3.31) and (3.32). values of minimuum ps-ludo-o.-thcqcn2.'

numbers as this is cl~ar1y r-vadent, th-ay lie/rest into 61nc rarqrc

0o. ±f. 1[0, 70).

§3. 5. Comrposition of a number of ths minimum Fseudo-crthogonal

ccrcr n ts.

L~t us ccasidor in that calitrated in the

standardizpd/rnocmalized system certain number

Sumaizngth minimrum Fseudo-crthogona 1 numbezs

we form number MA:

MA -M41 + M..,+. + MN 1

or

v he rm
+S1)fl~d~). (3.37)

SA (S*' + S-2 +. +-,_)(dp)
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V aluea S A subsroquantly w3 mill call zhe trac3 of a number A.

As is eaviiant r.umrhrr MA, differs from numhcer A only in. 'ermn c,-

diiit in *-e latter/las-t tasis/base.

S-,rca each otf tho cc~ponr-nks/terms/addands li~s/riests,

regarding, in t s rang? 0--,:

then af- r (n-1) addition we cbr-ain

Under condition pn>fz-l We cbtain" MA<aO, i"9* Wit.

fc-rmaticn/sducation MA is .gnsured nonappearancs for :aae

[0, O)

T.Ve tr-u; riak of obtained numbqr MA to US i-t is alWays

accurately known, si nce the true rank coincides with ttia calculat-id

Page 101.

Howevcer, =alculated ran~k, as is known, is -lefined accorl-"i t:z

the thecrr- about thr- addition cf ranks as the sum cf thc- ranks of

operands minus the sum of the allcwgd transitions through tih-, 'alus

of nasis/base taking into acccunt, their weights.



si~ice or- all iits, e-Xcrzp)' digit :), thEP lattar/jast fcuriir:

for, transitions with the addition of minimnum ps- udo-orthcgonal

nurnb~rs baOiLg it cannot, but th.e wcight of orthogora oasi cn

lattsr/lst !)asisz/base was accetE- equal 2. o unity. th-'s cr

suosta-iially *nlf~ he calculation of the ra: K )f a r..

Let us designate through K, the sumi Of th9 ranKS Of th; 114z1iU7

pseu o-crthrgcna'. nurnbars

KA4= (3.38)

and wie will subsequen-rly c-" number KA call the xqznal cf th- :at k cf

[. nrumbe r A.

L-2t us designa--1 t h~oy Z 1( ,12A a number of trarnsi--ions or. th:

lattpr/l-ast bas,.s/bascj, which cccurrsd with ths e~rda~:r
S0%,+ S*CI + 3.9AA= [ PR (39

and we will subs3quarntly numbar nA call thq cor:ectior. of thz. :an C

number A.

Then the trus rark Of nUMbqr MA 4is def ined as

rt A KA-ZAA (3.40)

TPius, m-Ufl2fumn psnil c-crthcqcnal r'2jbf rs sqzva as tre* ccnv.v--4T
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.3t an !a: 1 co c-:znt b y sumniar1z in a wh ich it i4s or.ssi4 b1t. t o c !--:a

number, which coincid=es wit" ary initial number in all 14-i'is, ?xoit

digit by thc latt~r/last basis/basee. In this case te us is .kro'wn th

rank of the obtained~ nunibc=.

Azcdi c: (3. '1") tne mrivi-,T t ac? of stun S* ,-: :

it h th-z tractz of n~umber A with- * e rcelationshbic/ratio

SA-n-12 * ,S (3.41)

The iequality can be refined b" considering the nunbe- of zeros armonc
the dirgts of the numiber A: ..

After desigrnatinc- a quan~tity of zero di"F4ts throur-h i~t i.s

possible to rewrite (3.41) in the form

SA -n + 2+ OA 1<S*A<SA (342)

Page !02.

F.-cm (3.,40) w-~ know tht: true rank of nu~nLa-r MA, enhiei

i.ntzrests the tru-B rank cf nuiaber A.

In a number or; cases it can. tq de tarminad immrn-diat~ly, tni.

on tne relation ship/r at ic between ct ani SA. Let us formulatl- ltn=

theorrm, which --s iatlFrrnining, when ths ranK cf number A can ti

istermined immediatply according to th-? rank cf numoer MA.

Theorem 3.12. If in the standardized/normalizeO system of

rumnbar A (al, GC2............t, C
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ani by the ad,!4ti-or of th-3 n-Jrum Ps-u4.o-ortncjcnal nui~b-zs

obtain3d, is r"Moer MANa, M2 . ri SA~) with ran rm., then rjr_ o

rumber A is preset dete rmined by the expressicn

whL" r A 7 av a val'le A 0 , 1, -1.

PrCOf. From the pro pertiss of rimerical sejuezcas 4t sK

that t mc'mb rs o0 th ? s,?juencE cf the f orm

(at, a 2 . S),

wh'oss vaiu=m S a ~u2to SA, SIA +1, , I 'tney have a Z a k, p: u'It

larger than the terms which have S=O. 1, 2, . -i fic, o'i

the raak of r-'Iiner MA and sxaminini differant mui-ualIcirat' cns Dof

z,-ro or. basiz/bias? Pn, a., S.*j ar' SA, 'd 'dill obtail ValIiS rA, ~ t
rm, 3c at i r rw JVA :r unit~ and smaller rm, PDr .lft.

Lit us consider different possible cases;

Cap1. if zero thrcugh basis/basp p', are locatsd out of
intsrvii (SA-n-' 2- ,o(. SA), whi-ch is equivalr-nt tc the condition

thenSAn ±>,

rArm A nPH C, > S

rA rm[ flPHa11< SA n + 2+
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Key: 1 ih

Ca sc of 2. 1 f zr-rc cn basis/base p, ar' ar: arnged/ocat:- W-: 6 1,4r

S~q.oInrt (SA-n+2+w, SA) hx: zs amcre left SOA, thiat to corndi-:ion S.*>O,

rA =rm A fl anh> SA,

rAPM= rI[1 ;11 t2,<SA-

Key: (1). with.

Page 103.

Case of 3. If S*=O then tro w the properties of numerzical

sequ-ncas to us it is known that rA=rMA, or any ",t

Casq of 4. If z~rc on basis/basr- P,, are, arran,4ed/!icat~l vit.-'

segment (S*A, SA) Or it coincides with its right. tordezr S.., =0. thi

a nd rA =r.%[A a *

rA =rI A A% art< SA

that also prcvgs the assertiorn of thror~m. Key: (1) .for.

Th i~s, 4 f is 'Knn rank r.MrA cf number A, then for dc-tsr-ining t
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rank of tne arbitrary numbe-r A it is n, :-ssa~ry --o ka-cid -hc- utll

ralationshiF/rltio c' valuas a,. SIA, SA~ ard zero on basis/basc- Pn -

the rank of numaer A coincides with the rank of numbqr 1. -i

MI, < H* S., <S.,

Th;% rank of nuna3r A Drcr init is mor3 tnan. the rank o:r urnb~r

rA =rm+,
A

Kcey: (1). and.

Th4 rark of number A P,:rL urit is lnss t1har thm ran-k of r-unh-r

rA r M -

i(If

06<SAH SA SI.

Key: (1). ard.

On thq basiks of that prespnted exp~dienc AA tc introduce as thS4

further characteristic cf a numter.
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Dzterminatian. The charact--r cf numb.r A w-4 wi ll ;i va!it--A)

satisfying th. zondit. or

0 egii a > SI Hi SA> SI H'IH a, < S*AHSA < SA,
I, eCH a,><S H SAS.A,

(3.44)

Key: (1). ::. (2). cr.

Page 134.

.,

The character c- ' number is very ccnvqn-.ien and ccmpact

characteristic. In particular, it Froves to be, for the fixati-.) of

the fact of ovecflow during the addition it suffices to know only t-

-haractcr cf operands and sum.

§3.6. Critcricn of cverflcw during the additicn.

Let bc preset two ainimum Fseudo-orthogonal numbers M%' anA -Ila

with digits ai and P, on cue and ths same basis/bas. P with th.

minimum traces, respectively equal to -* and Si.

WC4 fcrm th:ir sum

NI = M i + Al1

or M = (0, 0 .. 0, (ac + P) (mod pi),

(SaI + S;,) (mod p,.)).

L .... . 7. -- -" . - .. .-
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The minimum t-ace of nach numbpr lt as dasignats through

As is known, minimum trace can take either the value St+ .

S:1+01 = (S*1 + Spo) (mod p.),

or
soj+A, = (S' + Sp, - I) (mod p.).

Dp=tarmination. The pair of digits cc* and : we dill call rorrect

pair, if fcr tha sum of two minimum pseudo-crtaogoral numnbers MA41 ard

MAI occurs the r-Ilatcnship/ratic

,*,+10, = ( =. + SA,) (mod p,.), (3.45)

and thi pair of digits at, P, wp will call incorract pair if

- (S ± S;, - I) (mod p.). (3.46)

on ths basis of this de-termiraticn can be formulated th3 fcllowirc

t heorem.

Page 105.

Theorgm 3.13 (about the trace of sum). If in the

standardize.z/normalized system are preset two numbers A, and A_:
A,  " 1- , - .2 * ,!D)

and the sum of these numbers

.41 + A2 (-(-" + a,") (mod p,), (u't, + a") (modp.),
... (ag + a ) (mod p,))
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arnd if t-hz sums Of th' minimium cseixdo-othooal coinpcr-nts -of Is

numb~rs ar3 MA,, MWA,, MA1+At:

AAi (C11"), a',. 11

M4 2 (a 2 n-'.~ 1. S.4I),

A
4

A12  (~(1 -+ ez) (Mod PI). (a(") -+ ,"') (mnod P2)..

n- a,-) (mod P,,--, S414.42),

thr th-2 tracl; of sum occurs the excression

SAL+A=(SAI + S..,-6.4A) (mod Pn), (3-47)

whqr-A 8A1 A, is i numto of inccr:cct pairs, which arc- ccnta--.>-a in.

the Sp-juence

Proof. ACC~rding to the dsterminatiol

SAt = ,S %+..+Scl, ) (mod p,)

Si=(S,*a + S*,(2 + .. + S.-z (mod p,,),

= (S~i cs + + . . , ct) )(mod p,).

-.tis coo~ute

(SAt SA,) (Mod Pn) = (S ", 2e))
I I

fl-i I-I

For 3a=zh Value STa possibly eithcr (3 .4~5) ,wrien (?,a" or

pair, or (3.4$6) , wher.(a1', a"') - incorrect pair. ienc'i it fc:.cids .a

SAI--As will differ frcn SAI4-SA, cy a number of incorrgct oa-4rs i7

(3.4 ) , that also :-omnprises the assertion of theorem.

TIhe theorga '-xamrnned Mak6S it possibl-a tc tEn tz S 1

of s-um i-n the:, vilu~s of tr ac es SA4, and SAt coMPCSaij withcut f
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sum :rcmt tac: x'nimum ps,:udo-orthcgcna1 ccmponerts.

Pacie 106.

Lat us consider now how it is pcssibla tc t.rie'

numbers of t.rar.sitier4cs through Pm With 11-111t MA, a-.d MIA-2

AF~r this !a~t us i4ntrcduce the followinq :.? -rm-natior.

Determination, the pair cf digits (a(,"' d- wil1 call S-an a r

pair, if with trie additicfl of two min;iium Dsquio-orthogorial nu-niart-

occurs inqquality

S:12I + Somm <Pm, (3.49)

and ty ncrastandarci pai.r, if:

S,-(L + S'*ju > Pm. (3.50)

Th'-ov~m 3.1i4. If in th,; Etandardlid/nor mali.zed systom,. a-'?

preset numbers At, A2 and their sur A1 +A2

A, = (a.', 1 l), .*,al

A2=(a,(2), a() ()
A, + A2 = ((1" + a,22 (mod p,),

as a') (mod p2), *,(a( 11 + an") (mod p.~)),

to the correction of ranks of which is resPactiv-4ly 4-ual t: 1Av- 7At

'9A1+Aj, ther coccurs the follcwirg 'aqu.li,:y:

nA+l= 1 Aj +i AA1 eAIA4+ -Y, (.!
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Whe rr e.4=, ar- - .:u .zr cf ronstandard pairs i: the sepu r.c-
a., t, Ct a. , , ( 2

but values an! I are determined from the conditions:

U _: :: SA0+S., P, (3.52)ec.1H SA, - SAS < pn,
I 1, ecli SAI+A, r 6 AI, A ,> Pn.

0, ec.iH SAI4A2- 6
AI, ASp< A. (

Key: (1). if.

Proof. Regarding the trace cf numb=_r A,+A, we have

SAI+A2 = (S 1 ,._ + .+ S - ) (mod p,).

In the right silz of this expressicn value SQ,+St,,whre i=I, 2,

.. , n-1, will enter either ccmplet-ly, as S#,,,)Q, if (ar , a*-

staniard pair cr as pn+S,,l-,,t otherwise.

Page 107.

Conscquently, the right side of this axprqssicn will b to valuc

PnEAIA, more than SA,+A,, i.e. with fcrwation/aducation SA,+A, will be

perfect on eAlAt - it is l-2ss transitions

through Pt, than thD sum of a number of transitions, obtaine.d with

formation/education SA, and SAS individually.

Furthezmor2, with the additicn of traces SA% and S4, can iccur

transition or Pn, if SA,4 1 SA,,>P, W~iCh was not ccnsidered iu:ra
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calculaticn S.(,-A,2 CC,-S'7u~nt~y, th- sum of the corr-Acticns cff :anks

must be additionally incrpased tc a rumbsr E.

On th.e sum of traces SA, ard SAt Jit-can be rzprfsenttd in th,7 foi-.

SA, . =~f-jS (3.54)

whirs s - whcl; non--egativc -u,,be-.

*Tilk i n into accoun t t:hat s< p,, we o n t he bas is (3. 47) n 1' (3.5 4)

will cb tain

* SAj+AS = (S -
6

A, A,) (Mad P-).

ilh-e occurs th=e ralatienship/zatic

5S> 4
5

A1A 1'

the zefinemnent f th:e sum of thr corrections cf: ran.ks is rot

required. in this case

SAj+Aj, = S- A9

o r

SAi+As + 
6

AiAs = S < Pn

i.e. zequality (3.51) occurs.

In the? cass when

S < 8 A1 Ati

the trice of sn i-s defined as

vhencp SA+A, Pn + S -6AiA,

SAi+A2 + dAiA2 Pn + S > P,,
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and the sum of tam ccrrections ef ranks must te reduced prr unit,

that also is reflacted in equality (3.51), which composes the

asser-icn of theorem.

Thaor-m 3.15. If in ths standardizzd/normaliz'd system ar

•-s?t numbers AI, A2 and tha±ir sum A,+A 2
4,

A, + A2 = ((at" + a,,) (mod p,), ..., (a.- + a")) (mod p,))

rA,, rA2, rA,+A, KA, KA,, KAI+A,
with ranks A and kernels A of these ranks, respectively then
*:he kernel of the rank of the sum AI*A, is determifned b,- the expression

KA+A, = KA, +K. 42,- ,A,-.- .AA, (3.55)

WAer e..
n-

Mr,+A, = _ "mm (3.56)

L { , ec a"+,->)p,,
Ili = O, ecA MI+X!) P (3.57)

Key: (1) if. 1 2 1 1a'<P(3

Proof. Let us consider minimum pseudo-orthogonal numbers M" 1

M41',on basis/tesi Pt with ranks rp) and r ,, raspectively.

SinCF with thr addit..or of twc minimum pseudo-crtigcnal n'imbt-rs
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it cannot be decating 10, d)'the-:n tru3 rank ram~a - C~1 f :~su 11 x "

numbers ccinciias with the calculated rank cf su wl+r)hici.

dqf ined as

r~~ r (1) al - i i n

Summarizing both Darts cf this equality on i from i= 1 to in1, w,-

will obtain

KAI4A, =K + KA - MA1 1 .A, -A A,

that also ccnposses thr asserticn of thporem.

Thr-or-im 3.16. If in the starnda--dized/nor malized syst~n a:i

orst numbers A, an~d A2 and their sum A,+A,2 with ranks rA41, rA,, rA1, 4 2 ,

by the: ksrnels of ranks K.40 NAS, K.AI+A, by the corrections c-' :-n

.4~1, Akj 3AI+A, and characteristics- AA41, A.42, -. 41+4, re-spectijvely, -1er.

true rank rAI+As of sum A1 +A, is equal to

rAZ+6A, = KAI + KA, - mA,+A,- :tA1 - IAg -1AI+A,- 4+ Y-

Page 10. Sin=9 the true rank of sum is iatermired by ths

expression AAKA-1I,,AiAj

then, aftar placing 4-n thq right sids of this ?quality valu- K.{ 1,A,

frcm (3.55) and, Va111 -tA1 -. %2 trcm (3.51) ,; w~ il. btain

3.K42 + eA, - Al Y - %.%i -'As -
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Tnis axpression after decreasP E*Ii'A DaSSes iJ- (3.58).

L ?t us fcznulate now the thecrem aoout the criterion of ov: rfiDw

wit. h l.t-ofl of twc n'DLrn~s.

Th~o.r'-m 3.17. (About thi czit"--ricn cf overfloi duringr~ aidiz or).

If in the st-ar iar-iz'-d/ncrna2.4zpd system~ aze praset twc posi'tivi

-umb--rs: A,, A2, tneir sum A, +A2 with charicters ,AdAi,

rispsct ivcly, then the single valut? of value Q

=AA, + AA, + q~ . 4 ±- ' (3.59)

indicates that with the additicn cccurrezd the overflow, arnd z'ir:

valuR Q tpstifias abcut the ats- nc-= cf zIverfl'cw.

Proof. in accordance with the theorpm abcu:- calculat(-- ran.,,

rAl+A, off sum we car write

i t1

After exprassing values rA41 and rA1 through the kernzls ')f ran-cs,

the ccrracticn :f ranks and charactq.:s, we will obtain.

r.41 +A, = K.4, -- A, 2AA, + KA, - 3,4 4 2 -. rn -'2
(3.60)

Ll-t us destqnat'-- thrcugh Q the difference betwc-rn th-. tri an

calculated rank of the sum'

rAl+A, - rAl+A2.
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Page 113.

A ft':1r s tis titutirg herc value rA,+.4, frcm (3. 58) anrd va lu -

r 4 +,frcm (3. 00) ,we will ottair

*I't i4S known that in the absenc-3 of ov2rflcw the tr-ie ::

coincilss wi-th .te calculat-7d, i.e., Q=O, and -Jn the nresce~c of

cvor:low calculate d rank is less than the real rank by one, i.e.,

Q2=1, tnat alsc composres ti'e asserticr. of theore..

The zxmnnd =ri-tericn of cverflow during the additicn cf Iwc

numbers can be uenerallzed 4-c an arbitrary numiber of

ccmPor'4ts/tems/addarnds.

Ganiralie. ltheor-n, 3.18 (abeut the criterion of overflow rr.

the idikn.if in the standardized/nornialized system are pra-s~t

positive numbers A,, A2 , ... , Am their their sum

A=Ai+A 2 +. +Am

-4 th th- charact ers r es pectively AA,, AA,,., AAm, AA, the Zzro VI 11

val iie

M M m m
E A, + XTin, -AA- i+ 2Yi, (3.61)

i-2 i -2 t-2
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w he r e&'TH flH c.lo KenHI4 C MMb

7wnere~ A~-~ Aj c qi ImAj+j tfme.A (3.62)

MeCTo nepexox no OCHoBanrno p,,
OBocTaJ~bHbX C:Iy4asiX;

0,ePiSA(i) -+ SAi1 , > ;

Vi{ ::+S(IS <n (3.63)
0 , {H S: ::I + 6+ 1 < P (3

K 3y: () if alu c rI t h addtticn of slim. (2) with numb---rA :~:

tr-ansition cn bas4is/base pn, C - in remining casE-s. ( 3).if

-a rnimber of incorrect pairs in numoers AM~ :in d A,+,) testifieS

about tht? abserci? of overflow, and th,-t nriczarc valu- of valu- Q

i ndicatps ths fact that with ths addition it cccur -- d overf low.

?7co'f. Ncaapoearance from rarge [0, 0) of sum from -f

componnts/terms/addends assumes that had point ot eaier~eic 7M

rangi 'act on cn? of Ih intprmpdiatr stag~'s cf a-ddi:ior, i '

QA(Z1) 0,
= 0. (3.65)

=0.

Pags 1 1n.

From thr first F.xpression of ccrditicn. (3.b5) wF w:1lI cbtair.

~ ~ d An
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Q.. ., .. 2) A A A.A "- 2,. N,4 -_ 12 -- - - 0,

whence
A. - = +A., 2 . - - Y2

Let us assume n~w that is satisfied the condition

0

an4 fCr: it s correct

A A( AA + r ' ,,- j tj yj  (3.66)
j"=t i=2 = =

Lst us CoDuti n[OW vauo

; At+,, = AAz, + AA. * f, , - A+1~ --- i*, + yIi+,.

Aft -7 SUbStitUtlk.J --r- value A.,,i, from (3.66) ,14 will o a'-

i+1 i4-i t+1 i+I

E AA + Yj 11n, J+t I j , f X'J.
A( j-t j=2 2-2 j=2

Thus showei that if expressicn (3.i1) occurs with the a itizn

Cf thr. numbers
A d i> = A,, j,

tn--n it is ccr:zt with additicn i+1 of th numbers

A'i+i = Aj.

Applying ta.- method of inducticn, 4s prove valility (3.61) fcr

any i, in the final analysis for i=x, tiat also composes

assertiocn of thz generalized theorem.

Pale 112.

§3.7. .--pras~nta.taicn cf numbers. Introdlicticn of th3 s4 J . c a
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n u mb ;'r. P u 1-- of s n s.

Th o syst,,m of residual. classes is very efficient with th ;

fulfillment of :a-:ional c~sraticns, noticeably It is complicates wit'-

the fulfillmc-nt of slich cperaticrns in tna aith-netic un-,t, u

which --s r<u- :- ncwl,_-fg cf -=ntir .num, _.,

Positionlj value-.

Thr- introduced concent cf the rank of a rumber, which mak-is

DOSSiJble :C -4- Pri-.Ci~le SCiVe= "he irrcblems, %hlch raelate to h

avaluation c:f aatirn! numher as a whole, nevvirthel: rss pcsssss th-

dizriciercy/lack, connected, on cne hand, wi:h t-he fact that thns vel 'i

of the rank of a number is not modular, but on thq other hani, by e

position of ths dat;erminaticn of thi rank of a numbsr intc ths

oositi:)nal syst:ai of ccurtina.

By i-ntrodu~t:n of rank we introduce tc th? repr~essntatlcn cf a

numbsr element/cell of ccsiti cn. Very reprasertaticr of a numberZ

beccmes hstErcganeous an,", naturally, in tnis casa hin",3:: tho

aoncositicna - operations cn a number. 31 tae possible mn thou; Of

ovpo:cavinj this difficulty is the replacement of rank the character

of a numbar. In c -rtair cases i4S consid: rc- by advisanOIE.. th.,

onlistment of the trace of a rutber - modular value.
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E:th the c.,aracter and trace nurnb-rs, bein; modular values, a

the saine- tiai :-rry inf-ormaTiJ.cr. atout i4ts positional reprcs',ntiticn,

in other words about the locaticn of a numnber relative r:o tlez first

irteIrval of rnum- rica~l rang'3.

us hv sufficiently successful very fact of '

enlistment of mndulaz valuqs, which dc aot brea. teurJiFcr-,>v-' of

thc? reDr~srrtat,on. of a rumb,5r, but whi::h at ths same im cirz-y

inform-atien about its pcs-,ticnal value.

Thus, speaking about a nurter --n the syst~tia of r3siduFa2. cIss= ,

we will consid:er that tc us are k!!owr its ramainder.s/rssidueS Dn

bases/basns p~ ~ . ~ rcS nbssbs , and charac':s:

LAA.

Th~cr=-m 3. 19. If ir thc standardizad/ncrrnaliz ;d svst fm arz

preset the .miriimum pseudc-orthogcral numbers

M ,= (0, 0, .,- 0, at -, 0, - ., d

a nd 4-t at =* 0,n .oa ir- (a , - a. i s 4in corr ect.

Proof. As Ls known, under the conditions of thc thecrc-n

and~ th- minimum, tract rof t sum ct numbqrs M,,ian d M~- is ~~.2~



DOC = 81023905 P I;E ilF

Page 113.

+S - 0 (mod p.).

H~b ric
S~l +(pjJ) -- (S' iS- - 1) (mod p),

that i accoralac wt th- d =rrinaticr confirms inaccuracy .: r-._

Theorem 3.20. (,bout thp sum cf traces). I.n the

sta:nardizd/norma iz system trace S., of number A, which has .A

diffren from zero ones digits ir bases/bases p, Pz, *.., P-

trace SYA further to A number 0-A are connected wi-:h thE

rslationship/ratio

(SA + SY-A) (mod p,) = lA. (3.67)

Proof. As =an -;asily be s-en, the trace of the sum of a nvimbcr

with its addition to P exists

3 A+(._A) = 3gD -- 0 (mod p,).

On the other hand, t e sum of the traces of a number arnd its

addition to d satisfies the relaticnship/ratio

SA + S- A 
- A,.9D-A SA+(.D-A) (Mod Pm).

vh-r' 8 A._A - number of incorrect pairs among (ai,pi-t), i=I, 2,

n-i.
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A7corling t: th- prvicus theor?m a number of inccrzEct = ir

coincides with LA- i.a. with a number of nonzero digits in a n ubn:

A. Hence

(SA + S_-A) (mod p,) = A,

that also composes the ass-rtion cf theorem.

Corollary. if number A with trace SA and aumber of nonzero

digits PA' then h trace of a further nimbqr is preset is dp--irz.

4, by the r.lationship/ratic

J*,,-- S ~,L, H >S
SIASA, AH RA >SA. (3.68)

Pn +RA A, cAH ILA <SA.

Key: (1). if.

Page 114.

Thaoram 3.21. (About the character of a further numbcr). 1. th,

numbered system character AA Cf nuwber A is ccnneczed with charact--r

A._A of further number O-A with the :alaticnship/ratio

A, e HOnO A
A A I < 0 (3.69)

-A A ec m , 0 1 ~& H A > SA ,)HJH (n 96 HPA. < SA,

Key: (1). if. (2). and. (3). Cr.

whara JAA- r umb~r of ronzerc digits of numbs.r A on basts/bass.s p ,
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Proof. Let us consider the sum of number A with its addit'cr t'

A + (.--A)=

With to addition occurs the overflow, i.e., =, urthtrrc r,

character ar-d thi trac. cf sum equal to zero

AA+(.9 A) - 0; SA+(_-A) = 0,

whance

SA+(.q-A) + 
6

A, ,D-A = 
6

A, ,.-A < Pn H V = 0.

Key: (1). and.

The criterion of overfloi during the addition accepts thl form

or
AD-A = I - AA +. (3.70)

Wi analyza thi possible cases when an=0. Transition through p,

with addition m and Pn--zn will nct cccur and, therefor:., q.=0, i.e.

(3.70) it passes in

Ag_.= I AA+.

Are here possible two cases.

Case 1. If JAA>SA, then SgDA---A-SA ind with additicnSA-4-SA -

will not bs traasition through Pn. Corsequently, =Q ar. A9AD-A=-AA

kI
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which :orr?spcnls (3. 61).

C1se 2. If LA<SA, then SA= LA+Pn-SA, in suM SA+S.FA dill

occur transition through Pn, i.e. e=1 anj

A A---- 2- AA. (3.71)

Pags 115.

However, sinc! AA and APA can take only values cf 0. 1 an - , h-

equality (3.71) is possible only with

~AA1

which coincides with (3.69). Then that in this case AA=I, it ,

completely understandable. Here SA is greater than quantity 1A Of

nonzero digits in A, and it is possible to claim that occurs th-

s it ua ti on

wic0 < SA < S..=,

which iq.ta-sr. rs AA= 1.
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Now let a, =# O.

Then there must take place transition through P, u, h

addition a,+Pn--n, i.e. 1h=1 ard (3.70) passes in

A.*A = - A. (3.72)

SHere are alsc possible twc cases.

Case . II SSA, 11 c- > S=0 a r -3(_A=--AA, which ccirc. ?sw

(3.69).

Case 2. If IA<SA, then =I and (3.72) passes into the

, exp-:gssion

AjD A  AA - ,,

which also coin:id;?s with (3.69).

Thus, the chsorms examired allow for us on th. t-acr and

character of an initial number tc unambiguously det rmnie tzace a.M

character of a further number. let us now move on to the stuly Df th

prcblem about tna introducticns the signs of a number.

Earlisr was examined the version of the introducticn cf th_--

artificial form of numbers to which both negativ? and positiva

numbers thsy were represented as positive numbers, morecvar wcra

established/installed such rules cf the execution of the cosrations

which ensured the correctness of result both in the value ard 3n th=

sign. In this v:-rsion the pcsitive numbers are zaprtsent-.d by ni _-s
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in interval [P,-), and regative O,P).

If we among the basis of system eat the basis/basF, equal t:

two, for Pxampl- p,=2, thin it -is possible to consider that th4

numbers, which li- ir the range [0,5/2), ire negative, and in the ran, =-

positive. Number itself /2 can be accepted as zopnnu-Q= z-,-.

Thus, a question of the determinaticn of tha sign of a number is

equivalent to tft detcrminaticr of the irtsrval in which this .;Lnb--

is located.

Page 116.

For the case whon cn? of thp bases/bases is equal to two (!-1=2)

it is pcssib-1- to claim that ths number

A = (0, % .... ,an,) H ,--(,:,•., .

Key: (1). and.

have diff3rnt signs, since they lie/rest at the different int-.rvals

relative to &/2.

Let us focmulate the thecrem, which makes it possiole in a

numbpr of cases to immediately dptezmine sign of a number.

Theorim 3.22. (Abcut thA sia of a number). If :n th:
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standardized/nocmalizei system wit. bases/bases p1=2, P2,, .-. ,

ire or-szt numb.rs A of fA:m A(at , , .-, n) with minimum t:acs

S. , then all numbers, for which is fulfilled the inequality

ap-S-A+ I 2 (3.73)

they a:-, -- gativz, ar, all numbers, for which i- f lfilled th

inequal it y
>Pn+ I2 '(3.74)

th-y ar= Dositive,. ro of. uirb=r k e n .oe in th lit s

(a SOA) A < (a. - S*A+ I)T p

Crs=q ur.tly, if

(m-SA + 1) -f<-T (3.75)

then A<8/2 is nagativ-. Hcwever, since

,2 .p,-,

that (3.75) it is possil . to rewr4te In the fo rm
So

A.--, + I < T "n

raking int3 account that basis/bas-. p,- odd, wae, assing f:cp /2

to (P,-l)'2. we ca., write negativity ccnIit o n 0 fr umb r A in th0 f0r

(3.73).

Analogously from the conditicn

w3 will obtain the condition of the pcsitivenss cf nunbh: A (1. 74)

after replacing p,/2 by (p, 1 I)/2.
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Page 117.

Th = theore'm qxamind about th.p sign cf a number with the knowr

minimum trace of number S! allows cn inequalities (3.73) and (3.74

to determine th . sign of a number, leaving not iefined only the cast

when numb-r A is such, tha-

G,1 - S*A < p 2 +
2

.4

In other words not dcfinc-d is tbh case of a scall in th i absolu:a

value number A, when A is included

2 ' 2 Pnt

i.e. it is lccated in the interval of length 1/p,, con ainir.g poil-

a /2 is th; cer.tr of symm-try. It is obvious, at this interval thEV

lie/rest both positive and negative numbers and therefore one f:ct

alone of determination A in this irtervil it is still insufficient

for letarmining the sign A.

For explaiaing th4 sign A in this indefinite case, it ;.s

possible to ent-r as follows. Let us consiie4r the number

A'=A+2 =A+(1, 0. 0).

According to the detrminaticn of the sign of number sig n'

=-siin A. kt tha same time number A' doe s not lie/rest at the

interval of uncertainty/indeterrinancy ind i s i known mininu- :r-n
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S*A, then sij'. A' will I) dper~i_-::sd Jr, dco:r-anc:; wit.h u~-

(3.73) , (3.714), but on sian A' will be determined sign A. Thi,-s, 'dit

known m~inimnum tracss S*% and SA, a question ibout the sign of a numi-r

is sclvsd by tzia simple analysis cf differe nce a,,-S* a:-d, SA, L-: us

formulata thc- aialoc7ous theor~n' atcut the 1atamrininatir of h

c: a ruxibmr thrz 4-. SA, taKirg 4into acco'Int that

a- S, < S*A.

-SA > all - Sk- n- .

Theor~am 3.23. If in the standardiz~d/nornmalized syst-rn wi:-

bas-is/basles p141 P2 w..., p, are presc-t numbers A of foz:r A=(i -12

*.. a) wit- tr-ara SA,, then all Mumbers, for which occurs tae

inequality

alSA-4- 14-(f 2() (3.76)

they are ngaziva, and all num~bers, fr which occurs th i ul>

Pn+1 (3.77)

they aro ositive.

Page 118.

Haere also wS have a region of uncertainty/idetc-rniran-,v 4:'-cn

already consid3rabiy wider is character-ized Dy the inequaliti-_7

an1- SA< <n

c-SA > n2 n2L )
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In other -i-rds an he'rre the re-3iorn of ucrany~ ~~.~

is lccataO rear 612 cn hcth sid-Es from 't, but in view otttc

dissymmetry of =_valuaticn S*4 through SA this ragiLor is urisymmetric-1

relatively 01/2. Furthermore, durirg usq SIA for th:: lefiniticn of tho

jnt-nrva' of o~~EiainA we ta k- a,,-S* wher, an>* an P.- a,-S*i

W n n z< "A, 'dh. :n : U sr- SAit cann~ot ba? in all cas;es dir

(Xn<SA tak: a P,-" aZn-SA withc'ut the analysis of the character ozf

numbear £NA.

L:? is ccrr:i,!cr th's rreth-cd cof dietermining the sig.- of a niimher

based on sprecfc E.xamplf.

L 3 t be pre=sat th'- systf-m of th-, bases/bases

PI =2, P2 = 5 . P3 = 7 , p = 23.

Lst us giv? minrimum psrudc-crt~cgeaI rnumb-irs Z'or th~ F srzl'f

systemi cf thc bases/basqs

AM1 1=(1, 0,0, 12) M3,4 =(0. 4,0. 14) AM34 =(0, 0,4, 14)
M21=(0, 1,0, 10) M31-(0, 0, 1,4) M5=(0, 0, 5,17)
M22  (0, 2, 0, 19) M32= (0, 0,2, 7) M38= (0, 0, 6, 20)

Fxamnl;e. To istermirne the sign of number (1, 1, b, 22)

Lat us computa the trace ofr unbar A

Let us compute
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an -SA =22- 19 =3;

2 = 1

n-2- =2;n - _
Pn--111

2 (0-2-)) - 11-2=9.

He:r is s=tisf -d the cond.ticn (3. 76) -.=., 3-I&<; 1 h -*z<

". nuan--r A is n 7tiv .

Page 11 9.

W.tH.i iS krw, h chaF'ct f cf r.umo:rD AA the si 3n cf a

number can be datermined cn the basis cf th-2 criterion of Ive.r-fw.

Let be kncwn trIca SA and character A., .f number A. ie form th! sum

A' 2 A -±-f = A-(1, 0,0 . 0)

and let us compute the criterion cf overflow C. It is onvious,

'2=1, ov~rf-1cw o~ure anr A>4-. which determines tae positive si;2

of number A. When 2=0, we obt.air A<- i. e. A negative.

Let us consider expressicr. fcr Q. Number -7'- as -s known, '-.3

trace Sg=--2--1and character AXg=I. Th n

A,

Value 'n, is her_ e4ual to zero and therefore it is omitted in -

axprssion ftr 2.

,,t -- , i i ii I III I II I I Ia g
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Th' .n?-:hcl zf 'as-rq thc, critericr o': ovarflci --c:7~

the sign of a number is very sirre; however, he assumes the

knOWlec 'of cftlaaterS AA and A _qD, i connecti on -iith which Jis
AT

interastin-l tc note thq close interconnection between. the sign of a

numoer ani i4ts character - kncwle dq- of one of therse values it-

zcntr4;butr~s to ta2! ;*,-te:rmina1-4-c7 cf aacttar.

In the cas:t whezn characte: A, i-: is diractly -ifficult t

define, and is possible tc define AX2A.whe re 2A it;- is unaierstco n s

result of addition N+A, tc the tariget lsads the following tz1

us surocsr numbir A= (a,, C12, ~i negative.

.Is c o rn u t ed 2A = (0, P 2 3, f) V ardi A-'

2. is d 4-u~ddcit o tt cuctin -t -?A/2 0-1 basis/bas .- ,

Ih- basis of thnfact that digit p accord-ing to our cordlti: is

always ditof: neg-ati.ve number.

3. Is checked agreement of digits a, and p.

If i1=p, the n ccorectly our assumption ahout thr- fact A-

negat2.vc number.

ipu-, 4.f cr,=1-p, A - rumbner.
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* Let us examine an example in the system with bases/base s P,-2,.

P= 5 , p3=7, p4=23.

Example. To determine the sion of number A=(1, 1, 1, 2) by the

method cf doubling.

We computg 2k= (0, 2, 2, );Su=(109+7)(mo~d23)-3. We compute

(0 , ,4 i.e., an initial number negativq A<0.

Lst us examine now hcw can be introduced in an explicit form thoe

sig n of a number.

we will ac--ompany each number A by its sign sing A. Let us agree

that the digit of this bit is equal to zero, if &: O, and to unity, if

A<08

Let us examine different cases of the establishment of thq sign

of rpsult with the cperation/prccess of addition.
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Case 1. At1 A jk4 A2=1A+4

Sum Aj+A 2 is here positive and it should be ascribed plus sign.

It is nocessary by the use/application of a criterion of overflow to

establish fact of output/yi-ld or norappearance of result frcT rangq

fO [0 ).

Case of 2. A1Z-jA4. A 2 =-j4

7+ 4

This case is symmetrical previcus. Sum is calculated normally,

1 by it is assigned minus sign. It is necessary to explain by means of

the aritgrion of overflow, did take place from range o,).

Case of 3. A,= lA, A2=IA

Is calculated the sum

S=jA I+ (-A, I).

Here overflovs be carznot and the critericn of overflow must be

used for the purpose of the detornination of sign. Actually/rally,

if 1&4#2, then difference I4-I+z i - Fositive and the sign of rqsult is

positive. But then

S-f+(IAtI-IA, I)

IM
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will contain exzess g, here must cccur overflow. Thus, hare plus sign

must accompany sum of S, if 9=1, there

9 - AIA I + AP-_IAII +11.- AAl+_-A-t+ Y

moreover , indicates transition on basis/base p,, during the

addition of the digits

vhere 41 and i. - digit of nurbers A, and A4 respectively cn

basis/bas p.

Page 12 1.

Value e reflects transition on basis p, during the addition of

the traces
StI + 3,-_IAI.

Lit us examine now the situation when IA,I<IA I.

"4 Here difference j is negative and the sign of result is

negative. Then the sum

S-V+(lA1l-la6l)-= -(IA2 I-iA, I)<*

will not contain excess 0, overflow will not occur and 9-0. In this

case the result will be represented in the form of object to D and

for the subsequent use rust be undertaken a supplemental to it

number.
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Case of 4. At=+-.t Alz+, Az

Is calculated sum S=U%-IAI+IA2. This case is symmetrical

previous with the change by the rcles of components/terms/addqnds.

Thus, for th;- operation/process of addition with numbers of

differant signs, the sign of result can be determined according to

the criterion of overflow.

In this case there can be formulated following rule of thi

determination of the sior of sum.

Rule of signs during the addition. During the addition of

numbers with tha different signs, negative component/term/addend is

replaced by its object tc a.

4In this case the sign of the obtained sum is positive and result

is obtained in the natural form, If cccurred cverflow Q=1.

If overflow did not take place (9=0), then the sign of sum was

negative and result was obtained in the form cf object to P.

§3.8. Formal division.
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Let us examine the simplest case when dividend completely is

divided into tha divider,-denominatcr.

Let be givan two numbers in the system with bases/bases

pi, p2, .. ,, namely: A=(al, C9.. .),....3 ( 31 2,.. ~ an~d

let number C=( Tj, b~ e quotient of the division of A into

B, i.e.

or ~A =BC.

Fcr product BC we will obtain the expression

whers ki - whole aon-negative number, which satisfies the ccndi4tior

Equalizing BC to A, we will ottain

YJ =at +kipi(3.78)

Expression (3.78) uniquely determines the ligits of quotient. Thus,
-4

division in the case when it is accurat~ly feasible (i.e. when A

multiply B) , can be realized by a step-by-step division of digits

at on pig here step-by-step divisicn is understood in the sense that

if a, is not directly divided ccaFletely into PI, then to it is

added so many once p,, so that a,+ kip, would be divided completely

into p (=1, 2, . n) .
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Undqr condition k,<pi this division in a single manner will

determine digit yj. Let us ncte tbat this division is possible under

supplemental condition P10

Very important role plays division into 2 and generally on

degree 2 11

Essential is here the absence cr the presence among ths

-~ bases/bases evaa numbers, and in particular number 2. We begin

examinition from the case when among the bases/bases even numb-rs it

is not contained.

SA - even dividend, for which are knoWn SA, AA. Let it be furthsr
A

Let us designate through SA and A1A respectively trace and character
T T

of number A/2.

Dstermination. Let us name/call digit at of correct, if

(a,/2, a,/2) is correct pair, and incorrect otherwise.

Let us demonstrate the fallowing theorem.

Page 123.
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Theorem 3.24. If in the system with the cdd bases/bases is given

even number A of form A=(E 4 , 02, o. 0 ) with trace SA, character

AA and quantity of incorrect digits X, then the number, which is

obtained as a rasult of division A into two

A

it has a trace
S SA +) (3.79)

~2

and a character

- -,- Y (3.80)

where value t and , they can te defined as

- f I,.3ec.H SA + X HeqeTHoe.0A
* t 0., e " " SA+). qeMoeN\ (3.81)

= O0 ecn e (3.82)

Key: (1). if. (2). odd. (3). even.

Proof. Sinze in view of the condition of theorem A - even

number, then has the place

A=+ AT (3.83)

Regarding the trace of sup we have

SA = (SA +SA -6) (modp,).
T 2

where 6 - number of 4.ncorrect pairs in the components/terms/addends

A/2 and A/2, i.e., 6=X; hence and it follows (3.79).

For determining the character AA let us use- the criterion of
T
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overflow for (3.83). In this case, naturally, the overflow cannot

take the place

&AA+AA +'q. AA-Z+Y =01
T T

whence it ansues/escapes/flowsa out (3.80).

IfSA±+X odd numlber, ther during division SA41 into +Wo for

obtaining SA it is necessary tc add basis/base p.~, which is
T-

equivalent to tas presence of transition through p,, during adliticor

SA +SA, tE= 1-

Page 124.

But if SA±X - ven, then during determination SA it completely is

divilel by twc and, therefore, during addition SA+SA cannot ti,

transition through p,, ;.&-e=0. Thus is ccnf irmed validity (3.8 1)

4 - concerning Y6, then it alsc is determined on the parity or

oddness c6~. Actually/really, if a,, odd, then for formation/education

we add to a, basis/base N~ and then with addition pj+p will

* ~* occur transition through tasis/base p,. Thus is proven the valility

of relationship/ratio (3.62).

The absence in the system of even bases/kases creates

convqnieance during the divisicn into 2, but impedes the detarmination
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of parity or oddness of a number.

Lat us examine the situaticn when among the foundations for of

system eating in even basis/basp. Let for certainty Pt=2. then by

form of number A ( L, ' 2 , -,aan) it is possible to judge abcut its

parity, namely: with at=1, number A odd, with at=O, number A even.

Let us examine even number A=(0, az, ... ,an1) trace SA and

character A, of which they are kncwn. During division of A into 2 we

will cbtain number A/2=( t, g2, ,.., ), all digits of which arc

determined unambiguously, except digit 01 acccrding to base pl. For

the digit 0, we obtain an uncertainty/indeterminancy of the type 0/0.

Generally speaking digit f, can have either a value of 0 or 1. Let us

designate thrcugh (A/2)0 and (A/2)t, the numbers

(4)o--(0,A, ... A.) c jicAom S',

- 4 "

Key: (1). with the trace.

Digit a1=0 can oe obtained from the sum 01+01 both with At=0 an-I with

1, i.e., from the addition bctb 2(A/2) 0 and 2(A/2)t. With addition

2(A/2)0 the obtained in A digit &t=0 is correct, since it is co--rs-cn

pair (0, 0), while with addition 2(A/2)1 , this digit incorrect, since

pair (1, 1) is incorrect.
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The account of this circumstance is reflected in the traces fc:

(A/2) 0 and (A/2) 1, whicb can tc- defined as

2

2~=S+L~ (mod p.), (3.85)
T2

* where X0 quantity of incorrect digits in the series/row a,2~,

an. U

In order t3 establish/install, which of the versions cf number

A/2 is unknown, let us apply the criterion of ovsrflow, morqcvsr 1?-,

us assume 2=0, since with multiFlication A/2 by 2 only true A/2 will

not derive result from range [O,p).

4 ~ Wq investigate thp occurring here possibilities. Let us extrazt

the criterion of the overflov

IAA +q%-A 4-E+V=O. (3.86)

During the analysis of the criterion of overflow we have availabl,-?

the values of values AA, SA, lo, ard theref ore, to us was known value ~

Let us present SA±4 and SA+AQ+I in the form

SA + 4* - YP. + Pt,
SA+ AS+ I YP.+ P2,
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wher3 pl<p - waolo ncn-negative number.

Let us examine the possible cases, after introducing for the

convenience the designation

I I(4 CZH AA=,
0'A ocTajzbHbX cnyqaax.

Key: (1) . if. (2). in remaining cases.

Case 1. AA=!

Versicn 1.1. , ever, 7-1.

If a, even, then i=o. in this version the criterion of overflcw

accepts the form

2AA -=0,

* whence 4=AA=O.

4 But this means that the unknown quantit7 has that valuoe SA+X
SA+.+ 1,

either,, which is even, or the value P, or p2, which is odd.

Page 126.

The selection of corresponding value SA+% or SA +4+I uniquely

determines by (3.84) and (3.85) value 0,, namely:

P, = AA*(a--)AYAc(k).
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Here p(x) is a function of the Farity of number x, defined as

V X ILcJAH x-HeeTHoe 4cjAo,t \
(x) ----~OecaH x- qeTHoe 4HCAO

Key: (I). if. (2). cdd number. (3). even number.

Ve rsion 1.2. o cven, 1=0.
; 2A - I - =,

The criterion of cverflo% in this version takes the form

whence Dossible th? uniquc value e and AA:

= I.

Therefore, unknown is the ruaber which has SA+X either

SA+x,+I - odi value, or PI cr P2 odd. Hence

pt =A Ai (a- I) A YA Vp.

Value 0,, in versions 1.1 and 1.2 can be determined by the general

* formula

pt = A A ( - l) A (P2). (3.87)

Varsion 1.3. a. odd, y=1.

In this version T,=I. conditicn (3.86) can be rewritten in the

form
2 AA -+ I =0,

whence t=I, A==0.

AI
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Then unknown quantity is that which has S+ 0or SA -r+ I

and p, or P2 even, i.e.

version 1.4 odd, .1I=0.

'9Page 127.

Condition (3.86) accepts the fcrm

2AA 0

whence E=AA.=O and in unknown quantity value p, or p2 qvefl, an

therefore, value p, can te defined as

At= A A V'(a,) A YA *I'(P2I)

value 01 in versions 1.3 and 1.4 can be determined by the ge-nral

formula

Pt = AAA (a-n) A I(P2 - (3.88)

Case of 2. AA=0.

Version 2.1. a,, even, -y1.

The criterion of overflow will be written as

2AA -9~+ 1 =0,0

FF

and
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version 2.2 a, even, 7y=0.

The criterion of overfic'. acquires the fcrm

2AA -0,

vwh@nce a =AA =0.

Unkncwn quantity is that which has p, or p2 even numbler,

whence

General formula for A, in vers-4cns 2. 1 and 2.2 takes the form

~l=~*(a-1)A~p2I). (3.89)

Version 2.3 odd, -V=l.

Condition (3.86) can be written in thq form

2AA + 2 0,

22

Therefore, value 01 can te defined as

0,=AAAV~a)AYAP(2)-

Page 128.
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Version 2.4. a, odd, y=0.

Condition (3.86) acquires the form

~2AA + 1 -0,

whence t=l, AA=O. Thsn

. a*, A (a.) A vA V (p2).

General formula A, for versions 2.3 and 2.4 takes the form

At = Z0 A 1 (c,) A (P2)- (3.90)

Case of 3. AA=--I.

Version 3.1. a, even 7-1.

In this vsrsion the criterion of overflow acquires thq form

2AA+ 2 -=0,

%oTxyAa ,=0, AA=-I.

Key: (1). whence.

4

Let us introduce the designaticn

I = (" . A,=_I,
W-I0I ocTaA. hx cAyqanx.

Key: (1). if. (2). in remaining cases.

Then Pt = A A(a,-I)AVA* (P).
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Version 3.2 = ever, y= 0.

The criterion of overflow in this version can be written

21&A + I-=O

H;-re -, A =O.-

Ha ncr

At WAA (M,, 1)}. )AY A* {).
I

General formula for p, in versicns 3.1 and 3.2 acquires the fcrm

At A V (a = A ( ,- 1) A V(N). (3.91)

Version 3.3. ,.- odd, 1=1.

Let us write the fcru of tle criterion of the overflew

2AA +3-=0,

whence t=1, AA I.

- Page 129.

To unknown quantity corresFonds that of the values p, cr 02,

which is even. Hence

At = A$A A * (,) A yA* CP2- I).

Varsion 3.4 c6 odd, y=0.

For the criterion of overflcw we obtain the expression

2AA+2- -=0,
T
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whence 9-0, A -. Then

- MA* (,)AYA*(ps- 1).

In versions 3.3 ani 3.4 general formula for 01 will take the form

At A V~ (a.) A1 V P - 1). (3.92)

The cases qxamined can bE ge nerAlized into the following .hsorlu.

Theorem 3.25. If in the system of oases/bases piz2, P2, p3, ow.,

t

P,, is preset even number A-(0,c%,(Z, then in the quotient of
QA

the division of numbor A into 2: j (At. ... N), digits p,., p.

defined by the step-by-step divisicn of the ccrresponding digits of

dividend into 2, and digit A& is definel by the relationship/ritio

I- aA * a. + P2) VAA, P2 1- ), 13.93)

where AA is defined as

,-,.i pACao +1 -I,0eCA, AA PHo Hy.no.

Key: (1). if. (2). it is equal. (3). or (14). It is equal to zero.

The character of quotient AA is letermined
I

A MAlN A 1= , - (M-)l, (3.94)

1 0 Bm C& =--IHX CAY ()0RX,()
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Key: (1) *if. (2). or. i~t f1 $~ trvtovnin~j CcLtse.

and its trace
SA =SA+)0+0

2

Page 130.

Prcof. Proof is based on cbtained previously expressiors

(3.87)-(3.92). In this case it is ccnsidersd that expressiors (3.87),

(3.88), (3.91), (3.92) are deoicated to the cases when Q, and P2 -

value of different parity, and in exFressions (3.89), (3.90) thm -

values of identical parity, that also is riflected in (3.93).

Let us examine the methods of determining the parity of a numbs.-

when among the bases/bases thore are no even cnes. Let us intro3ducE

the preliminarily following determination.

Determination. By the formal division of number A into nim r B

we will understand such process, during which the digits of quotiont

are obtained as the result of the step-by-step division of the Iigits

of divisible/fissionable into the appropriate digits

divider/denominator.

Theorem 3.26. If in the system with the odd bases/basos

P1,P 2, M...Pf
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is preset number A=(a,, a, .... a.) with trace SA, character ,. a~n

number cf incorrect digits x and If quotient from the formal division

of A into 2 2
with trace SA and character then parity or oddness of numbcr A

T 2

is preset do-fined by the follcwing relat.icnship/ratic:

(3.95)

where values q and f cans be fefIned as
. ,N = V (a.),

"' (sA +;L)- (3.96)

Proof. Since A/2 is cbtained by the formal division of numoer A

into 2, then in the case when A cdd, quotient of thq division exist

A +

therefore with the additicn of particular, obtained during the formal

division of A into 2, with themselves overflow itself it will not bs,

if the initial number A was even, and overflob will occur, if numbar

A is odd.
4

Page 131.

In other words

(A) =21A + hA - - + Y.

Hence

(A) - 'I + A + _ - = 2..
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The left side of the obtained expression is even, that can be written

as

whence and follows the asserticr cf the theorem

In a number of cases when it is necessary to determine vallie

*A/2, is admissible the use/applicaticn of the following method: if

the preset number A is even, thee searches for value A/2, but if

number A is odd, then value (A-1)/2. In this case the determination

cf value A-1/2 can be organized in such a way that the actual

subtraztion would not be carried cut, but only it was implied. Let Us

examine the methods of calculatico SA-I and 4Alwhen they are Knlown
2 2

S~AA;A Let us introduce the fcllowing determination.

Determination. Digit aj we will call incorrect first-ordier

- - digit, if pair(a,p,....) is incorrect pair, and by correct first-order

digit otherwise. A quantity of incorrect first-order digits in number

A we will indicate through X,. Cigit u~1we will call incorrect

second-order digit, if pair (11L-1, ILZi) is inccrrect pair, and by

correct second-order digit otherwise. A quantity of incorrect

second-order digits in a number we bill indicate through '\2-
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Let be preset odd nurber A. Then we can write

A-I =A+(0-1)

and

" SA-t I

Page 132.

A

Hers _ with the selected hascs/basss is a constant value.

Then for SA-t is correct the expressicn
-

=SA+ Sp-I- t+XSA2I (3.97)

Concerning AA-1, let US cCmput& first AA_. Taking into acccunt that
-

AI_-,=0 and that with additicn A+(g-I) has the place overflcw, we

will obtain
,--A% + 'I.- A - -- + '9 1 ,

w hie nc.

A_,="A +?I-+y-- I,

or, by taking into account (3.80) and (3.96), we will obtain
AA-I_ -,

"i-
9(SA+Sp t -1-,+)t)+AA+'I- ,+Y- I - *((.,+P- 1)(mOd P,))

2

If ,O, then q..l and

A-
-r 2

But if a,-0, then

A- 9 (S*+ S,- -+ ) +A 4-g+yV-! !

-- 2
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Thus, is examined a auesticn about the division of number A into

2, which corresponds to the shift/shear of a binary positional nurber

to one digit to the right.

Let us examine now a question about the division intc 4, 4hich

corresponds to the shift/shear cf a positional number to two digits

to the right. L.t in the system with th . odd bases/bases be is orpsct

the multiple 4 number A with trace SA and character AA. Let it be

*further by step-by-step division it is obtained

A 2

Since among the bases/bases t.ere are no even ones, it is possible to

say thlt via of L/4 indicated it is unambiguously determined.

Page 133.

If we designate through X' value

SW'=6 (, .)+(2, +(3, +,

where 6 - number of incorrect pairs of digits in the appropriate

operands of sum, then we can write for S. the expression
"S ., .S A + 1-( 3 9 844

Concerning ,A , than it is determined from the condition so that

A/4, multiplied by 4, would nct leave range 10,PO), namely:

4A_ + + ,q. (2y-, y,,) + N (3, , ) - A-

+ y (2, -)+y (3 A, A) =0+ 42T 4 Y 4 4 0
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whence

.A T AA (TIn (Y, ) Y)+ . (2 ,, n+ TI. (3y., Yn)) +
4A A

+(2 (3 (y

+ y 2 + (3(3.99)

From (3.99) it is evident that character AA can be equal to unity in

one case when all E are equal tc unity, and all v, and 7 are 3qual

to zero and AA=I. That as j. is quotient ., then
4,

n (Y,,¥, 0, nn, (2Y., y, 0, Ti. (3y, Yn) = 0

will occur only when is multiple four. All E will be equal to

unity only if value SA+'+3pn is multiple four.

Let us introduce the functicn .(x), determined by the conditions

0, eCAN X JI(PTHO ,ewpe.,('
I 1. ecam x HexpaTHo qeThipeML"A

Key: (1). if x is multiple four. 42). if x it is nonmultiple four.

Page 134.
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Then can be formulated the fCllowing thecrem.

Theor-m 3.27. If in the system with odd tases/bases p,, P2, .. Pn

is preset number A=(a1 , a, *.) bith trace SA and character aA,

that separates zompletely intc four, and if quotient of the divis.on
of A into fcur -=(y, , ) wt trace SA and character AA, j r

for p. 4k+l, where k - whole ncn-negativ-3 number;

value AA is determined from the expression
!T

AA = (a.)Ai(SA +)-'+ 3)A A, (3.100)

but for p,=4k-I - from the expression

II~~~AA = t&(a )A i (sA , %' + ),A .,. (3.10)1
Proof. Let us first cf all focus attenticn on the fact that any

odd basis/base can be expressed in the form

Pi - 0 (rod 4),

where 9 can have a value cf 1 or 3. But then odd basis/basse can take

either form pf=4k+l, or form pt=4k-I. Lat us further note that "he

condition

a.--- 0 (rood 4) (3.102)

is necessary and sufficient so that would have the place
1,,(¥--,- y") -,,2 ) y = n. (3y., }') 0. (3.103)

Actually/really, let (3.103) have the place. This means that

Vnwith gselh four times itself it was rot *ran-ition

through basis/base pn. Ir cther words,

an - 4yn
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or

an -- 0 (mod 4).

let it be now correct (3. 102). Eet us assume that (3.103) it do.s no .

have place, i.e., with the additic of very with themselves ,

occurred transitions through the basis/bass, i.e.

n- -n

where - number of transitions through basis/base p,"

Page 135.

Since p,=4k±, then a,,=4 -,-41k±l, whence

' a, ---I (mod 4)

cr

a,, -- (4- 1) (rood 4).

But this contradicts our assumpticn (3.102) Further, the exnr .ssion

I& (SA + %' + 3p.) = 0

for basis/base p.=4k+l is converted into the expression

I (SA +' + 3) = 0,

and for p,=4k-I - tc the form

I(SA + V + 1)=0.

Thus is established/installed the validity of relationships

(3.100) and (3.101), that constitute the assertion of thecr m.
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Let 's examine now the situaticn when one of the basis of system

is equal to four. Let pi=4 . Then the multiplicity of number A four

leads to the value a,=O. Lst us designate quotient of the division of

A into 4

A -4 =(YI, Y2, . . .- .

For the digit 11 we will cbtain an uncertainty/indeterminancy of ths

type 0/0. Are possible fcur value cf digit , :0, 1, 2, 3. Let us

designate through (0, (4)' (_ _)2 (A)3 the quctients of the division

of A into 4 witn the apFrcpriate value of digit 7. In this case our

task it is to correct carry out a selection of the corresponding

* .digit 7,-

Let us demonstrate the preliminarily following theorem.

Page 136.

Theorem 3.28. If in the system with bases/bases p=4, p ..... p.

is preset on basis/base p, the Fair of digits ( then with base

Pn, equal to

p,,= 4k + 1.

besides ths incorrect pairs, determined in general, will be incorr.ct

also following pairs:
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U) nPH M- I rapbi (2, 3) H (3, 3), (3.104)
Qnpi m,=3Aaph (1, 1) H (1, 2), (3.105)

C3WnPH OCHosaHHH p., paBHOM

p,= 4k- 1,
C11p n 1 -M, Iapha (1, 1) H (1, 2), (3.106)
&fpH m, =3 nap~a (2, 3) H (3, 3). (3.107)

Key: (1) . with. (2) . pair. (3). with bas is/ba se 4)e qual.

Proof. with mj=1 the rank~s cf minimum pseudo-orthogonal numibers

for any -r are iqual to unity. Then the minimum trace of a nun'bpr (1,

0, .. ,0, s,* )is defined as

S;1!--XP-1]+1 [ P-1+ I.

For a number (2, 0, ... , 0, S2* ) we will obtain

S:= -ii K + I -~ Pn] + 1.

For number (3, 0, Of. 0, 5* ) we will hava

Let us ravaluate corrpctnass of DaIr (2, 3) for basis/base p, ~f t e

form

p = 4k + 1.

Here

S,- 3k+ 1, S,-= 2k + 1 , Sk +.I,

then
S,*+ S: 3k +2

ors+ss+i
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i.e. pair (2, 3) is inccrrect.

Fcr the same basis/base let us examine pair (3, 3)

or

s +s=s+ 1,

i.e. (3.3) it is incorrqct pair. iie demonstrated (3. 104).

L3t us now move on tc proof (3.106). p,=4k-. Then S,==3k,

S2 *=2k , S 3*=k.

Page 137.

Let us examine pair (1, 1)

S, +$,S=6k=2k + I

and

S!+ s,=s:+ 1,

i.e. (1, 1) - incorrect pair.

For pair (1, 2) we will have

S,+S=k+ I

and

s; + S; = s; + 1,

i.e. pair (1, 2) also incorrqct. To these we demonstrated (3.106).
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Let us switch over to value cf ml=3. In this case for a number

(1, 0, ..., 0, S1 *) we have a rank r=1 and

--[IP_+,--[I,_]+,.
For a number (2, 0, .. 0, S2*) we will obtain rank r=2 and

, s:= [1-6,P] +,_ [ .- ] + .
For a numbar (3, 0, .. 0, S3 ) rank r=3 and

-4i Letp=4k+l. Then S1 *=k+1, S2*=2k 1, S3*=3k+1.

Let us examine pair (1, 1). Fcr it

S + S, =2k + 2

and

S'0 =S10 +,

i.e. (1, 1) - incorrect pair.

Let us take pair (1, 2). Fcr it

S= +S,f3k+2

and

s. + S S + 1,

i.e. (1, 2) - also incorrect pair. Theraby is proved validity

(3. 105)

" , . .- - , .. .. ;-' " -- .. .
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Let us take now pA=4k-1. T~en 5 1 *=k, S2 *=2k, S3 *=3k. Let us

examin-3 pair (2, 3) . For it

S + S:=5k =k + 1.

pair (2, 3) is incorrect, since

s + s;= S, +1I.
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Page 138.

For pair (3, 3) we have

S, + S; =6k =2k + 1.

This pair also is incorrect, since

S, + s' = S: + I.

By this is proved asserticn (3. 107) of theorem.

Corollary 1. If number A is divided completely by 4, than lurin'7

tho calculaticn of value 1,

i =0, 1, 2, 3,

for each of the alternative expressions - , A amor.3 k,

X I, , J thor-. arr no identical ones with respect to value, In.

maximum value ace (lo)az=3.

Prcof. Ac=:z~ing tc thsorom 3.19 any pair of digits, which gives

in sum of p1 =4, is incorrect, ioe., always incorrect arc pairs (1,

3), (2, 2), (3, 1).
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Let us consilir now each Cf ( =0, 1, 2, 3). Let us ncta tha~t

Then valur-s X~are defined as

8,=(2, 2) + 8(0, 2) + 8(2, 2),

3 6 (3, 3) +58(2,.3) +56(1, 3)

and it 5s pcssin>t to' make tar-ie valurs ~

For m,=l wa will ottain

pn

0 0
1 3

X22 2
>43 3 1

ani for m,~=3 we will obtain

4k-'I 4k- I

Paie 139.

From tti' comparison of the obtained vallues for X.~, X1, X42, X]
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3scape/nsun :h3 fozmulatqd in ccrollarv 1 assactiors.

Corollary 2. If number A is divided completely by 4, th.an ancr.g

the traces

T 4

of altarnative zxors sions A 4 -- , 4 there ars rnc

identical ones with respect to value, and maximum differenc - S'-S's
I

*is equal to thrae.

Proof. This corcllary directly escape/ensu.s frcm previcus,

since the absenca of rqual values among Xi does not allow/assumq

equal values amng Si, but limitedress ()m=z by digit 3 determi irs

and

max (S2 -SA) = max (Xi1 --A2) =3.

From this corollary it fcllcws that each digit Yl dnswers its valif%

"S! mcreovar it is possible to place digits 7, in such sequence that

SA for the adjicent digits would differ from each other by unit.

Concrete/specific/actual Iccat4cn in different cases can be

determined by the following table.
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hMI -i mi-3

S. pnp= 4k-I pn=,4 + p=4k-I Pn 4k+I

SA+4 , =o ,= =o 0 , .0

SA710+, I =3 , = I =3

SA S.+,+2 y'=2 y,=2 ,= 2  y,=2
I I I

SA+4+3 = j,=3 j 1=3 1 =I

Page 14 0,cwit is pcssible tc already indicate path fc: th,

selection of necessary dJoi_ ,. True digi- will be that , for whi h

thesu
44 4- .....

it is found in tha rangs. [0,&). / Consequently, it is possibl - to usI

the conditicn of nonappeararcc, frcm the range JO, ) cf the s!n o_ L

components/terms/addends, which let us register in the form

-((44)', (14)') +E ((-)', (4)') +

.~ ~ ~+ 4n )"= (1s4-) w+Y- ba0e41ae (2 A4)' ...P nbe

.4--(cg,, a ...t . be divided com~letely by four.

n fo r l 7 in which diitsThen, for re-sult T "n(Y ,,Y,¥a= n hc.....Y'Y . n r
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obtain' by tha s: p-! y-stzp d±visicn of digits M-., a an into fT':,

can se4m two possib±lities: 71=0 cr T 1 -1. rf ,=O, then a rumbir A' -

the total quantity of inccrrect pa4rs, which appear during

calculation A as the sums

4 4 4'

will ba calculated cn the basis cf iigits k, whire zero in lijit ,

will b3 considar&d as the correct dig-t, since it will suppleT-n- n-c

changes in valus X0, calculated or the remainin4 digits.

Page 141.

But if 7,=i, then, obvicusly, X' must bl. calculated on the ligits :

remaining bases/bases (besides pl) with addition 2, since (1, 1) it

is incorrect pair and its participation in the

compon.nts/torms/addcnds gives 2 incorrect pairs. Thus, in thi :a-s

of p1= 2

SOA = SA -X O
4

or

T 4

53.9. Division into the fixed/reccried number.

Until now, we sxamined the simplest case of division, tam-ily

when dividend :ompletely was divided into the div i4r/dcr.cminato:.

However, in th . ;ineral case the division .- presents cn . of th, mcst
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labcr-consuminj arithmetic operatics.

Even in tha digital computers, whizh work in the positional

system of calculation (for sxample., in the binary), tar: cperatic.-n cf

division will stand apart and th-e time of its exicution

approxiatly/-)ximplar4 ly by an ord,r highi: than t.ne cf th-

exacuticn of ta- majcrity of elsmentary operations.

In thi system cf residual classes the diff-culiies of divisicr

are aggravated by th - fact that this cparation -n qrneral is not

"residual", i.e., the digit of quct~snt on the independent foun,cti

is no longer determined cnly by the digits of dividend and

divider/denominator on this basis/base, but it requires in one -r t--

other form cf infcrmaticn about the values of divid"_nd and

divider/lernominator as a whole.

In genqral the division cf number A into constant d shculd bc

distinguished two possibilities:

- when d it is not thq basis cf system and

- when d it entqrs into the system of basss/basqs.

Of the first case ths difficulty consists of the estab -z4 .t
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of the vary fact of f4os.cnability A on d or, which is the samn.

thing, in the reduction cf a number to the nearsst to it numbsr A',

which separates completely into d. Division itself can be produced

ste p-by-stsp.

In the sezond case easily is dotermined, does share A on , alzo

sasily is dta r~inad the naar tc A numbsr A', which separates

completely into d, but the determination of the digit of quo4:--

from basis/base pi=d requires the disclosure/Sxpansi-n of

un:ert~inty/inet rminanrcy, for which aDpears tan need for tho

enlistment of inforrmaticn abcut etire number,

Page 142.

Let 'is consiier i.n mcre detail the case, when d is nct radid,

V i.e., d = (6,, 62, .6. ,,). The formal guctient, which is obtained duri2

th, division of number A into d,

can be registerad in the follcwing form:

at) (2-ktpi a2 +kzp2 an_____

whers k, = 0, 1,2 ..... p- i (i 1,2 .... .) - non-negative integer, such,

which - k, P, completely is divided into 6.
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If we through I designate unkncwn particular, then numbc: A ca

be rapresented in the fcrw A-Md+tl(t<d), then formal quotient is ejual

(A)/ - = kP + t aM

whera k - whcl. non-negative number.

Hence
M=( t) + M. (3.108)

In the case small d (tentativelyd<p,)this method can b

-considersd as tha algcrithm of divisicn into d. In this case must hz

withstocd the follcwing seuence cf operations:

1. Is determined value

by the st-o-by-step division of A into A.

2. Is deteriined minimum trace S* of number Q and it is

computed
m, (a(4) - S,) (rood p,.).

3. On (O)-S* is determined number R=(r,r, ... r), Which is

subtracted from Q, forming M.

let as give the examples, which illustrate the realizatin :>f

the algorithm of division examired.
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Let us ssl?ct for this purpcse the standardized/normalizel

system with tha bases/bases: pl=2, pz=5, p3 =7, p.=23, by range P=1610

and by thz orthogonal bases: B,=8C5, B,=966, B3=1380, B,=70.

Pane 143.

Let us compute the table of ccrstaints R for the division i.--.

d=11. Zcnstants R are fcund frcm the following considaaticns: -s
• 'P 16 1n
examined near integer to value

R 1 =1 7=(1, 2, 0, 9). Here value - -is rounded off to the large si-,

since in (3. 108) will cost minus sign. Further, we find near integer

t -- =292,73 .=, i 29 (1, 3, 6, 17) and so fortt '.: :4

known value (a'b-S)(rnodp,,), then this it means that is known the inzeval

in whi-7h is located number Q. Ir this case -he zemainder/residu _ .- _!

subtraction - from 0 cannot exceed -- and in a number of casS

it is possiblz to obtain ambiguity, since botb -he diff-r=.nc- Q-t

and difference Q-(h+)- - can give remaindars/residues less Pan

in the I.ie .den e or the value cf number A. -et us designate th-

second possible constant through P', and the remainder/residue, hirh

is obtained in tAis cas-, thrcugh t'. Then for 1determining the

constants from values 4,o-4Q ttere can be suggested the followin

Table.
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p~b - So__

R R'

0 0 0 0 0
1 0 0 0 0
2 0 (1,2,0,9) 0 7
3 (1,2,0,9) 0 7 0
4 (1,2,0,9) (1, 3, 6, 17) 7
5 (1,3,6, 17) 0 3 0
6 (0, 0, 6, 3) 0 10 0

7 (0, 0, 6,3) 0 10 0
8 (0,0, 6, 3) (0, 1, 5, 11) 10 6
9 (0, 1, 5, 11) 0 6 0

10 (0, 1, 5, 11) (0, 2, 4, 19) 6 2
I I (0, 2, 4, 19) 0 2 0

* 12 (0, 2, 4, 19) (1, 4, 4, 5) 2 9
13 (1, 4. 4, 5) 0 9 0
14 (1, 4. 4, 5) (1. 0, 3, 13) 9 5
15 (1, 0, 3, 13) 0 5 0
16 (1, 0, 3, 13) (1, 1. 2, 21) 5 1

* 17 ti, I, 2, 21) 0 I 1 0
18 (1. 1, 2, 21) (0, 3, 2. 7) I 8
19 (0. 3. 2, 7) 0 8 U
20 (0, .3, 2, 7) U 8 1
21 (0, 4, 1, 15) 0 4 1 )
22 (0, 4, 1, 15) 0 4 0

Page 114.

If A is suzh, that a)-Sb it dces not brinj tc sinql-valu=I P,

(A A- V')th~n divisicr undergoes A-t', fron' it is comput . =- } ar-* -

=(,)-S gives either t=O or t=4, which alrpady makes it pcss!.b-, to

unambiguously determine R and, thersfore, M.

Examole. To divide A=(O, 4, 2, 10) into d=(1, 1, 4, 11).

1. It is computed
Q ( (0, 4, 2, 10)

(1, 1, 4, 1 0,4, 4, 3).

2. It is compute1

C0) - s* 3 - 4 (od 23) =22.
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3. In TaDla through anSQ we find R=(O, 4, 1, 15), ther.

M.=(0, 4, 4, 3)-(0, 4, 1, 15)=(0, 0, 3, 11).

Exampla. Tc divid3 A= (1, 1, 5, 7) into d=(1, 1, 4, 11).

1. It iCnputd
' [A O,1,5,7)Q= ( )' = =, 4, )=(1, j, 3, 9).

2. It is computed

SQ* =9-=1.

3. In tabl w3 f J rd F=(0, 0, 0, 0), whence A =(1, 1, 3, 3).

An xampla. To divide A=(I, 2, 4, 1) into d=(1, 1, 4, 11).

1. It 4.s c:mputed

Q 4 (1, 2, 4, )
Q= -1-, 1, . 11) = (1, 2, 1, 21).

2. It Is computed

A = 21 -II = 10.

3. In Tabl3 w:? find F=(0, 1, 5, 11), 4'=(0, 2, 4, 19), t=6,

t =2.

Hrq arcsa altornative, wo fcrm

A - V= (, 0, 2, 22- StA Q' =S(I1 0dii, 22' .) ,0,4,2).

Is ccrntut l a')--2--0 Significant digit t'=2 an.d thin -0=(I,

Mis"
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0, 14, 2)

Note. In a latter/last example was computed Q'as the f crm-l

quotient A-t'/d. In reality the same result will be obta4:'.3r Sm ply

by subtract"ior Q-P'.

PagR 145.

L3t us considf.r tho now more g-rneral case of divi3iag thp nuni;:z

A into thq uroduct. of the whols ncn-negative numbers D

wharg gverythinag d, (i = 1, 2, .,k) - mutually prime numbc-rs. Division

into D .s produ~ed on, thc basis of the following th-:orem.

Th -or~m 3.29. (about the division into thq product cf ~m~s

if in the- systam w4.1-1 rarage &-is pr~zet number A and is pr-=-sc!t ck -

mutually or me whole rncn-negati4ve rnmbers i 1~ 2 .. dk, zn

always it is pcssi4ble tc select the independent of A integers

1A11 112.

such, that occurs ths relatiorship/ratio

did,. .. d = It + Ri212 +l.!, (3.109)

whsrq -1i are the singli quotiJent:

l~j(=1, 2.k)

or, tha+ the saiie

JA2 (3.110-)d,4d2 d Ud7td7:
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Proof. L~t us consider case cf k=2, whean therr- ar:E two ccfactc:s

d, and &'2 . Then (3.110) is registered as

7,d 2  -7j d2 -

But since d, and m2- utually primne whole non-r-agative .nes

then always can. bi found integers p, ani p2, independent of A, suzh,

which takss pla:e (3. 111)

Lst us fuz:her use the method of inducticn. Let the theorem

accurate fcr s =of3actcrs. let us show that it is accurato fcr s*1

cofactors. In fact, let us shcw that

V

whers v - nnsr

For this must occur the equality

vd,++, + # (dt42  .) 1

or, which is the samie thing,

vd,+j+ tji+ (dAd . d.) m (mod ~)

Page 146.

For reasons, presented above, lattar/1.ast 3quality always
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Occurs, that also provss tr-eorem.

Observatiom. Tile accuracy cf exprassion (3.109) is d4etftmined by

the accuracy of the entering it single quotients. if single guj rirts

are z:ou~ed apprnximately, then final result is approximate .

Exa'mpla. Ia thl system with ths bases/bases: pl=2, P25- -f=7,-

p,=23, es thr single diJviders/dencminators let us take d 1 1=1(, 1,

'4, 11), d,,=13=(1, 3, 6, 13). In this case divider/denominator 1) will

bie Dzdldz=1L43, and iquality (3.11C) will ta~e the form

4-3 11 13'

whence pj1 -5, p 2=6.

Let us divide numbcer A=88'S=(0, 4, 2, 10) into D=143=(1, 3, 3,

5). Let us fird the prfeliminaril-y singla quotients

A A

T he n 0,,3, 11), - =(0, 3, 5, 22).

A ,

- (0, 0, 1. 9) +(0, 3, 2, 17) (0, 3, 1, 8) =8.

Results 4t was btained inaccurate, since the single quotients wer-z

calculated approximately. Considerably bette: it would be to taka

i~a1 2, i=-l/2, i.e., proceed frcm the identity

2. 11 2-D T 13

Thqr ~A (0, 0, 3, 1) -(0, 3, 5, 22) (0, 1, 6, 6) 6.
143(0, 2,2, 2)
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Tais result more exactly approaches number A/1 43 ard d f flrs

from prr-vious by two units, but in this case A,1 and ju2 they a:0.

fractional numbers.

"3.10. DIVI-Sicr into thc; basis cf syst-rn.

Let us now move cn tc the examination of tai division cf nuatnb:

A i-nto cne of tti,3 bas4S p, ot system with bases/bas3s Pie P2V

Page 147.

ASSUM9 we should divids- tumber A =(at, a2, . ,an) On Pi (cni cf

the basis of system) . Wit hcut the Icss of generality It. is possibl-

to assume that number A is divided completely into Pi, Ie. a, 0, 3.flnc3

otharwis? ws could cxamins the division of number A' =A -,, whi*ch

satisfies this condition. Let it te further

Pi (-TI 3~2, - - A-t, 0, PI, -. Pt).

Ths A= (YI, Y2. , YI-t. Yi, Yj+t) Y,)

C4 , 2 al-I 0 E- 2

-tt ' 2 71- 0 ' Pi1 P
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dcre all digits of iqiotient A.p,, except digit ;'.aedatsr-iin-d v

simply - by the formal djvisicn of igtinto appropriate di-gi, Pi-

Therefore the g~al of obtainin~g the quc -tisnt A/pi in this case i.s

reduced to tha lisclosure/qxpansicn of this

uncertainty/ind3taerminancy. Let us consider the serie--s/row o-f

rnsthcds o,.; detarmining th,? diacit V9,.

Theormm 3.30. Lct in thp system with bases/oas~as pl, pz,

N~ ia rings T. pr?sct number A=(ol, a2, .a~ with inrimum trace

tS*A, that separates ccmplatily in;tc one of the basis of system p: So

that the obtainad quotient they arq

A (Y11 Y2, ... V).

Then as digit y, or. basis/base P, in the juctien't must be taK=c,.

this digit, that thA minimum trace of quctient SII would be f-gual 1-

S*A=Y - Cn S (3.112)

* Proof. since S*A are the minimum trace of 4uotiert, thoen. occurs

the relationshio/ratia

AY O (- SA+1 (3.113)
p I Pg

Respectiva:ly for the initial number A w - have

(a, S*A) f < <(a, S.*4(3.114)

Dale litter/last inequality on Pi. we will obtai6n
___ D A AnS+ JD
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Page 1'48.

Taking into accoulnt tha4-

2 an --- S____

andn

Coprn h bandinequality wt (3.11) 11 call obtaintrq i ht fr

czn-S*
S* P

whence it follows (3. 112).

Corollary. Thz proved theorem determines the following algorithm

of the disclosure/expansicn of uncertainty/indeterminancy in thm casi

in question:

1. From SA, an~ And Pt is computed value



DOC 81023907 P AG F

2. Are computed digits of formal qdotienlt Alpi, b6sides Jii74-tvj

3. is ccmpute! miniaum trace of quotient

4. Is computed sumT

5. Is computed

(Sjo= (S*A, Q) (mod p,)

and from (S1*Y)o is determined such digit V,. for which differ-?nc--

S~y-(y*)ois minimum.

L~t us illustrate the methcd axamined by an exampla. Let b!

pres-et th.q systemn of the: tases/tase!s: p1=3; pz=5; p3 =7, p,.=3, ps=3:,

with range 39=4231.

The orthogonal. bases of this systei are equal to:

BI=2S210, B2 '=16926, B3=12040, B,=26040, B5= 1365.

Page 149.

Example. 7: divide number A=(1, 0, 0, 1, 25) with 24nirnum tr:kzs

S *=23 into basis/basrz u2=5=(2, 0, 9,5, 5).
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Min accordance with the algorithm given abov-z, ae proiucp

following operat--cns:

1. WC comoute

2 . W, c om pu tt .Ig Jt s of fc.mal quotian:.

(2,)-2 0. 8, 5).

3. W-* ccinputa minimum trace of- quotienat

4S0. =5-0=5

4.W compute sum

Q=21 -3=24.

5. W- compute

(S! ,)O=(5-24) (mod 31)= 12.

Prom the tabl9z of minimum ose.udo-crthogonal numbers or, basis/base

P= 5 :

M1 2  (0, 1, 0, 0, 19), M~= (0. 2, 0, 0. 7). .132= (0, 3, 0. 0. 25).
M, 2  (0, 4, 0, 0, 23),

we fini S!4=13. Hence 7fz=Lj Thus, final quotient are -- (2,4,0,8,5).
P2

Although this method consists of the series/row of operation,

enumerated of :-3rtaj4n sequence however almost they all can be

accomolishid in parallel and therefcrq this method barely is

dilated/q:xttirdql in thr time.



1)O J12 3 c<07 PA

or, th-' basis of thec:zam (3.3C) it is possible to o:gar-4z-

livision and to th,7 product of several bases/bases, perfcrminj --a

Paralini1 divisicn .--4- each basis/hase ind3.vid'ially.

Lit uis czasiiJ,: as an F~xamn~1e Iivisica in prciuct :)5*7=3-.

Examnple. TD divide num~ber A= (1, 0, 0, 1, 25)~ into P2?3=5*'7= (2,

0,5., 9 1, 2, 0, 7 )=(, 0, 0 , 4

Division into the crcduct can te carried out in paral'Lel -i-d

siaultaneoxsly dstermined value A/5 and A/7, and then -s del:rni.n~c

A/35. rhe quoti1int A/5 was by us determine.1 in previous wit- th=

measwre, nam'-ly
A A=

Page~ 150.

Let us datarmins the quotisnt

A A
PS 7T

1. L,4t us -zonputez

[1. S~]=[25-23 ]=o

2. Lqt us zoumpute di-gits of formal guotien-

(,0, y,2. 8).

- ~ - ______ P3
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3. Lst is re : r ain.. T uT tace a f ccct. n

S'A =8-0o8.
p.

4. Let "is z'omput- sum

Q=(II - 24) (mod31) =4.

5. Lrt us 1.tEr i ' (S%)4:

(Y3)lb 8- 4 z 4. oryaa Y 3

Thus, wo cbtai.

A-F -(1, 0, 3, 2, 8).
P3

V c C u-IC ti -It zf t he I i. c o:5? 0 num 7a ne- t ~t n~ a rd' c t o5

bas -s/tasd-s zj can te dstfrJred c. "h:e oasis ot t.e:::m 3. a- -

the division into the prcluct of numbers, namely:
I A A, A

wher w and p2 - integers.

Ha=re pl=-2, p2=3, th~n

A = - -(1, 3, O, 3, 10) (0,O, 2, 6, 24) - (2, 2, 2, 3, 14)= 107.
P2PS35

Actually/really,
A 3745-10'.

P2P3 35

§3. 11. Genral :as- cf division.

Lat us ccnsidar now the divisicn of number A into -he a-t-

divider/dencminator B. Here it wcull be possitI4 to construct

process, in the accuracy reprcducing oriinary ilporithm of o

division, realizd Ly tcnsecutive subtracticns and shifts/s c-.r .
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Page 151.

Howvr, it is zons,.A,:r-d by advisable to construct diviscion i, such

a way in it is pcssitle the larger measure to uss 1 spsciffiz

7hiracter D: op3:7ati~rns in the rEscitial classes. Iz tn2.s /LyZ

as-np cI~~intiy o -raticn ct 1iivisikor it is possible tc taki thi-

divisi:)r or. any of hc tases/tases whose execution w.as alr=P1 y

4 describei above.

Lt us coisilzr thi follcwirq prccass. L&-e ore cf the basis~ of

syst~m p1 =2. Lat us take 2 as t?~e alementary divtsoz.

T -e Ii-: s, ar: is dividrc n-to 2. Wc obtain 3,, d1jvj' 9, /2,

o bt a 7 2 -in s: k of t a crs w C-re Bh

In oazdllcI -di~h -his we Idivide A:7- ob ta;.n- A1  I i vi 1 A,: 2,

obtain A,, and sco to 44 Number 441 is the first intara~iate

juctient.

T.., 2n d s q? is ccumoutEd( Ist discrepancy I -B. C

1:~i~'i' it is cmputed

r ~ I.
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Th 4t stig?: is ccnmputed 2nd discrepanrcy C" I-C frB=C2!.

T&hss stagrs are rapsa-trd tc those pores, thus far discrep~ncy

is :s,11ceI to zeZro. Then the quctiert

w her=

0, Ob s9r vato::. Wh er ev er i s x a mine d . i v4 s icn inrt o 2 it is 4n 4nd=

eith,2r cxac-t aucti-3nt, whqn dividerd is mul--iple 2 or is near s-2a'ilcr

to t

Thi-s algcrith',m of di visi-cr. can be di ff-r en:-- ly mcd-if ird for -

purposs of the iccalsraticn c.- its conv=erg~nce. rdowe:Ver, W; will n )t

stop d.uring these modification~s, tut let us ccnsider the deveJo.xeTI:-i

Of -,hi3 algorithm with the use/applicaticn of savrrral DasFs/tas--s.

The fact is that the use cnly of a cne oasis/bas-a, equal to 2,

rs q u rs a comparativc-ly large numbepr of divisions wit.hinth tg

until the Jividad divider/denominator bscomes aqual to unity.

Therefire it is axpedieat to use several bases/bases i4n orll,.er, On 3n-

hand, tc 'ecrsass tho: capacity Cf OFCeratiors within thp stage, and cn.

ths cthar hand - to reduce the nutrber of stages.
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Let iis select three bases/bases ul= 2 , )2=3, P3=5. As it is3

above, by the =1am"nt/ccll, which are d:etarmining character ani

capacit of cpazations, is divi40or/denominator 'B (P,,

Pag3 152.

The con~tent of stages in this case is such:

46he 1st StgP Ar- ccnoutfd the qu34ti.qnts

B B2 =_ BI B_=B

where Pp, Pit. Pk- any of t~e bas-es/bases 2, 3, 5.

The selection of basis/basF, into whizh it is nacs-ssarv to

perform divi-sion in qach case, is d~tsrmin-i as fcllcws:

a) ;f ij.,0, 1 or 4, thqn division is p~rformsd on P35 M07%Crevr

with 0-3=1 Jividar/der-cminatcr B is reduced byl1, and with 3=L

divider/denominator B increases by 1. But if 03=2 or 3, then it is

sexa~min,:d dig9it or, basis/basa p2;

b) ;f 02=0, t.hsn division it is performned on p2= 3 , it 9,=l or 2

and 3,=1, then also is performed divisio~n into p2=3, moreover with

3,=1 divi-ie:/denominator is reduced by 1 , and with 32=2
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divider/Icncwir.ator .creasi-s tv 1. With 82=1 or 2, and! =0 h

division is pro'2ucad cn p1 =2.

in parallel with this is produced division A into the samte

'TuOt-_ts into which-, was divided 8, morsover rounding to thm multir l,

must b= producil 4n the sams d'rtecticns (i.=. by suotzaction c: bv

addition) , that also during the division of dividar/deominato:. In

this way is cbtainad first irterm~diats quotiqnr, AAt..

T~2nd stage. Is ccainutea first dic:A ac AW ABAA.

Z~ 3rd stagi. Is perfcrmed, as th= first stage, but with

dividend 01).

In this csif has the capability to memioriz-2 aDprcpriatz

dividors/damominators Pil, Pi,.P, and t he charact-er of t hm rclinri>in

carried out for cbtaining the multiFle luring the divasior into thrse?

dividers/denominators, then there is no necessity to repeatedly

producem division of B and content of stage it is reduced only tc

livision C', to obtaining ~" 01" Chi

If C,'," 0, then division cn this is f inishal, bat if Ck *O, th~n

is comput;ed dis:rapancy C2~ () CVBChl avid with it 4nter analcgously.
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So ar :epsated the stages of the calculat;.ons of inr ij?-

quotien .s and discrepancies uF to obtaining of zero intermediat- .

quotient Cl" = 0.

Full/tetal/corn piet= quct-Jert

k* +'k Cl-,

Pa4A 153.

Examols. Is prespt systom with the bases/bases: p,=2, 7)=3,
S41

p3=5, c4 =11, p=13, witL =angc .0=4290.

T: divide numbrr A=(1, 0, 1, 3, 1) into number B=(O, 1, 3, 6,

1).

TR 1st stage: 'hey are computed:

B,=(0, 1, 3. 8. 1 1 ,4,4 )B - '2 - (1, 2,4,4,7),
2

(1, 2, 4. 4, 7) (0, 0, 0. 5, 8)
5= 55 =(0,0.2 1, 12)-,

B3 =(,0, 2. I, 12). (0, 1, 4,. 4),
3

B_= (0, 1. 4, 4 4) (1, 2.05, 5) ,
5 5 ~ (I

Parallel oporations with t.he dividend:

At (1,0. 1,3,1) (0,2.0,2,0)
=- 2 - 2 A--(,l . I )

A2 2 (0, 1, 0, .0)

1- 5 . (0, 2 1 9,0),

~)

l J,.4lld) , . ... . . .
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A3= (0,2, 1,9, 0) (I, 0, 2. 10, I)3 3 = I .4 ,9

A = (1.,1, 4, 7,9 ) (0, 2, 0, 8, 10) (0, 1, 3, 6,2).

55

". First t te_- ediate j uot ient A4=(0, 1, 3, 6, 2).

Th7 2nd stage: is ccffputed the first discrepancy

C"I (1, 0. 1.,3, 1) -(0, 1, 3. 8, 1).(0, 1, 3, 6, 2) (1, 2,2, 10, 12).

T' 3rd stage: the repetition cf the 1st stage tor CC1X 1, 2, Z,

10, 12) C0, 2 (I, 2, 2. 10 12) (0, I. 1,9, I1) (0 2. 3, 10. 12).

2 2

C, = (0, 2, 3, 10, 12) (0, ],, 1 (0, 2.).98),
5 5

C , 1)=(0, 2.1. 9. 8) (1. 0, 2.10, 9)
- 3 3 -(1, 2, 4, 7. 3),

C , (1, 2, 4, 7. 3) (0, 0, 0. 8, 4) 0
5 5 (0,0. 1. 6, 6).

Second intermadiate quotient C"= (0.0. , 6,6).

The 4th stage: .s' ccmouted the second discrepancy

C2s)=.(I, 2. 2, 10, 12)-(0. 1. 3. 8. 1).(0, 0. 1, 6, 6)=(1. 2, 4. 6. 6).

Page 154.

Th. 5th stags: the repetition cF the st stage for C(2)=(1,2, 4. 6 ,6 )

L ........... - i



DOC 81023907 PAGE

(1.2,4,6,6) (0,1.3,5,5)= (0,2,4,8,9),C'2 2 2

C 2(..) _ (0 , 2 , 4 , 8 , 9 ) ( 1, 0, 0 .9 , 10 ) = ( 1, 0, 0, 4 , 2 ) ,
5 5

C __ _ (, 0. 0, 4, 42
3 =(, 2, 0, 5, 5),

C (, ) = ( 1 , 2 . 0 , 5 , 5 ) = ( , I , I )

0! this tha di"visicn can b finished, sirc th fcllcw. I

discrenancy compjulsorily will already bz zero. Lst us ccmacsn tK-%

quotient
(0, 1, 3, I)=(0, 1, 3, 6, 2)-(0, 0, 1, 6, 6)(0,1l,3,;8, I)

.>, + (1, 1, 1, 1, t) = (1, 2, 0, 2, 9).

Let us do some observaticnE= tc the describm.d algoritha:

1. The selection of tases/bases pit, Pi, Pi, for tne

concrdt--/soEciffi /actual system of tascs/bases can be reaiizeI

diffarontly, but it is ccmpulsorily linten with tho sp.cial

featxlres/pzculiaritiss Cf these bases/bases.

2. S-t cf conditions, cn which in each individual cas,- in f -irst-

stage is realized selecticn of concrete/specific/actual basis/base

from set pit, P.., P, can bo differently formulated. In particular,

can be formulated the conditicns, which one way or another con3i45.er -!

also the digits of dividend. Of this type the more refined condit.:.s

could to a considerable extent dfcreaso a quantity of iteraticns

(stages) and a capacity cf cperaticns in each stage. In this c.s i"
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can seem that tae playing tne leading role divid.tr/dsnoninatcr coul.

in different stages in different ways datrmine set Pi" Pitt PA"

Dterminatica of analytically cf the necessary set of =lemmntarv

diviscrs, set of conditions for th--±r salecticn and evaluation of

convergence Is lifficult and ha.dly appropriate. The basic of.

the study of these guesticns is the method of statistical mod_=ling

with thR help of which it is shcwn that an average numbsr of

iterations which should he led for cbtaining the quotient in th

sufficiently broad band (crder 1010), does not exceed three.

-!
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Chapter 4.

SFLF-CORRECTING CODES IN THE SYSTEM OF RESIDUAL CLASSES.

§t4.1. On the coles with detection and correction of errors.

The multiple research, carried out in the latter/last decade,

convincingly justified the possibility of the construction of such

*i information-carrying systems in which due to the special coding can

be created the immunity against the most diverse distortions of

intelligence signals. Completely clearly was formed the point of

view, that the fight for the high reliability of the transmission of

information, i.e., for the authenticity of information retrieval at

receiving end of the transmission line, must be conducted not so much

by the perfection of the technical transmissicn media of the

information where any possible increase in the reliability is

achieved by high price and now and then requires the development of

complicated protective measures, as by use/application of such

methods of the -oling of information which would be stable with

respect to the possible random distortions of information,

understanding by this the ability by corresponding processing of the

information accepted to exclude the introduced into it
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disturbances/perturbations, to clean it from the errors and to

achieve complete agreement what was transmitted from the transmitting

end of the line.

Page 156.

While the increase in reliability of the transmission of

information by technical equipment, even if we are not considered the

economic side of a question, is limited by the level of the

development of technology of communications and any considerable

achievements in this region require the new technical solutions,

use/application for the same target of special code systems contains

no fundamental limitations. Moreover, when selecting

adequate/approaching code, which possesses the necessary corrective

ability, it is possible to noticeably reduce requirements for the

reliability of very lines of transmission of information, to make

then simpler and cheaper.

For the computational means the use/application of methods of

special coding is dictated by most vital need. Indeed any computer is

itself the transmission system and infocnation processing. In the

computer occurs constantly the circulation of information. Although

in the machine there are no long transmission lines, but along the

available in it relatively short lines information circulates with
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the enormous velocity also in large quantities. If we take some

arbitrary unit, for examFle passage as one bit of one centimeter of

path, then in these arbitrary units the work of one computer of

average efficiency in the fixed/recorded time interval on the

transmission of information will be commensurated with the work in

the same interval of the series/row of the large state transmission

lines.

Therefore even from the point of view only of the transmission

of information during the develcprent of computational means appears

the important task of guaranteeing the authenticity of entire

colossal information flow. But indeed in the computer, furthermore,

it must be provided even and the authenticity of arithmetic and

logical information processing. In practice without the

use/application of methods of special coding the guarantee of

authenticity in the computer is achieved by double error for the

detection of correctness or inaccuracy of the results of the solution

of problems and by triple error in the -ase of the discovered

disagreement for the selection of correct result according to

coinciding data. This way of guaranteeing the authenticity reduces

the actual productivity of machine at least doubly. It is hence clear

that the guarantee of authenticity with any methods, different from

the repeated errors indicated, directly and is directly connected

with an increase in the productivity of computers.
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Page 157.

For each special code of which it is required so that it would

possess the capability for detection and correction of error, is

characteristic the presence of twc groups of digits - informational

and control roo. Into informational group enter the digits, which

compose the numerical value of the codel quantity, while into the

control group - digits, additionally introduced for purposes of

detection and cirraction of possible trinsmitter distortions. These

further digits are surplus frcm the point of view of the numerical

value of quantity and lengthen the total length of the code, that it

goes without saying somewhat reduces as the final result the channel

capacity during serial transfer and increases a quantity of channels

during the parallel transmission. Howevr, these circumstances must

be redeemed by those possibilities which obtain surplus digits for

the detection and corrections of errors.

Let us designate through JAAKA the respectively informational

and the control room of the part of code A. Control part K' is the

function of the informational part: K., F (.,)

The form of the function F and, therefore, the character of the
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introduced into the code check digits they are determined by the

adopted system of coding.

Lat in this transmission system an information processing be is

accepted the n-bit binary positional representation of numerical

values, i.e., ill operations are produced on numbers (being 4

distra-ted from the scales) in the range 0,2"). After introducing into

the representation still m of control binary digits, we will use with

numbers in the range [0,2"+'). However, this expansion of overall range

does not in any way increase the range in which can be represented

and be treated numerical data, since ths intrcduced digits do not

carry informational functions. let entire code A be ritten/recordsd

by the set of binary digits ej

A = (el, e2, -I Fn' 7n1 LIZ I ., +

Here
JA = {E, F2 ... I e,); KA = , - .

The basic special feature/peculiarity of all known up to now special

positional codes is the disparity of informational and control room

of the parts of the code relative to arithmetic operations.

Page 158.

Let JA, KAqAJ8. Kff be informational and vith respect the control

parts of the codes of numbers A and B, and let on JB be

S- -... *. *.*
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performed certain arithmetic cperationiIJ.,Jn)3oth parts of the code

would be equal, if operation f was accomplished above the

full/total/complete code, i.e., would be computed value

C=f(A, B), (4.1)

moreover J Q.. J )

Then, after computing KL = F (Jr) and after comparing it with Kc- by

actual control part of code C, it is possible to control the

correctness of the execution of operation f. Even more the

equitableness of both parts of the code would be expressed, if

besides (4.1) had place also equality

KC f(K, KR).

meanwhile in the known positional codes operation f is produced not

above the full/total/complete ccde of numbers A and B, but above

JAAJB, is obtained C'=f(JAJ), while Kc is computed as F(Ct), after

which is comprised the full/total/complete code C, for which 3c% C'.

Here KA, ,KB in the arithmetic cFeration do not participate, that

it gives no possibility on the control parts of the components of

arithmetic operation to compose the control part of the result, i.e.,

is excluded the possibility of the check of the correctness of the

execution of arithmetic operaticns.

Specifically, this property of the special positional codes

(their nonarithmeticity) impedes their use/application in the
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comput3rs, since the introduced cbeck bits Ao not make it possible to

monitor the result of arithmetic operation, while this check for the

computer not is less important than the control of the transmission

of inf ormation.

the At present in connection with the ievelopent of machine

arithmetic in the system of residual classes arose the possibility of

. the construction of the nonpositicnal codes, which discover and which

F correct errors, and at the save time of thE completely arithmetic

* codes where inforaational and control room of part is completely

equal relative to any operation.

Page 159.

L3t us consiier system with bases/bases pl, Pa. -e. p, and range

P -p .pz... p_,. Subsequently rang,, d, we will call the operating range

of system. Let us introduce basis/base P,-, mutually simple with any

of the bases/bases accepted we will represent numbers in the system

from n+1 bases/bases. This means that we will transmit numbers and

perform the operations on the numbers, which lie in the range 0, -,),

in the broader band (0, PI, where P=&p,..

Subsequently range P we will call the full/total/complete range

of system with one control basis/base.
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Since we acraad, that all numbers, with which it uses computer,

they must lie/rest in the range [0, 8), then it is obvious that if as a

result of any operation or during the transmission of a number it

turned out that is obtained number N, Dlrger J, then, this means,

while the carrying out of operaticn it was permitted error.

We will subsequently of the number smaller than 9,, call correzt,

and large 0-- incorrect.

Theorem 4. 1. Let bases/bases PLe Pa .--, P,. p,"-, the systems 3E

residual classas satisfy the condition

PT < Pn+t,
i = 1,2, ..... n,

and let &=( a&. a2, -I.. .. ....... ,, +)- correct number.

Then number .=(a,, where i=1, 2, ... , ne a*,

is incorrect.

the definit ion
Proof. The correctness of number A regarding/means that

A<
Pn+i

however, since P

P7 Pn+i

=1, .2 n- ,

- ° . . ... . . . . .. .. _ .. .. ..
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Pi

As soon as a*t,, number A cannot te located in interval [o,-).
P

but ten hs thep>ac
. but then has the place

i.e. A is an incorrect number.

Page 160.

Tlus establishad/installed the very important fact, which is

determining the possibility of the constructicn of the discovering

and corrective -odes in the system of residual classes, namely: any

distortion of 1igit of any one digit converts this number into the

incorrect and thereby it permits te discover the presence of

distortion. Morsavqr, there is cnly a only one value of this digit,

which can convert an incorrect Dumber into the correct.

As we see, theorem is proved on the assumption that the

additionally introduced basis/base is greater than any of the basis

of system. This determines the rule of the selection of control

basis/base Pn+,- it must be large of any basis of system.

It is necessary to note that by the same path can be provel

i _ lr ':- .... .. .. -'.-, . ...... ."-W
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somewhat more strong fact. among the foundations for eating such

small bases/bases pi,, pj, ., pi,, that

Then any distortions in the digits on several ones or even on all

these bases/basas convert a correct number into the incorrect, and

therefore in all these cases the presence of distortions can be

established/installed.

For the proof it is possible to consider the product of these

bases/bases F as one basis/base, and since is observed condition

P.<Pn+, then there will be correctly and the assertion of latter/last

theorem. Any distortion of digit on basis/base T can affect digits 3n

several ones or even on all entering P bases/bases. Thus, in order to

discover presence or absence cf the error in number A, it is

necessary to compare it with range 0. In this case, if it proved t3

be A> , occurred the error at least in one digit. But if A<P.

then either there is no error or it carries more complicated

character.
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Let us consilar some examples. Let us select the system of

bases/bases p,=2, P2-3, p3= 5 , p,7, for which the range of correct

values (operating range)i°=2-3.5. 7=210. Let us introduce the control
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basis/base ps=11. Then full/total/complate range is defined as:

p=2 10.1 1=2310.

Let us compute the orthogonal bases of the system:

B1 -(1, 0, 0,0, 0) - 1155; B, =(0, 1. . U. 0) =1540:
B., ;0. ) , 0, 0) - 1,86; B4  -(, 0 , U i. 3j30:

B -=(0, 0. 0. 0, 1)=210.

Example. Is transmitted number A=(1, 2, 2, 3, 6)=17. Instead of

it proved to be taken number Y=(1, 2, 2, 5, 6). For the detection of

error ye compute value A
.4 = I • I 155.- 2. 1540- - 2.138,5 - 5.330 -- 6.21,J- 2: 1

-9917 - 9240 = 677 > 210.

Since is acceptal number ' of more than 210, it is incorrect. Thereby

is discovered the presence of error during the transmission of a

number.

Example. I transmitted the same number 17. It is accepted4 (1,

2, 2, 3, 0) - is distorted digit on the control basis/base. We

compute value :
. I .1155- 2.1540 42.1386 - 3.330--L 0. 210- r2310-

= 7997-6930= 1067 > 210.

Thus Z>210, vhizh indicates the presence of error.

Example. Instead of number A=.17, is accepted number Am(0, 2, 3,

3, 6). Here to Jistortion underwent digits on bases/bases 2 and 5.

Since 7=2-5=10<p, this distortion must be discovered.

L .- AW
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Actually/really:

--0. 1155 + 2.1540 3.1386 + 3.330- 6.210- r2310=

=9488-9240=248 >210.

Thus, .- incorrect number.

Let us give now the example when on the bases/bases whose

product exceeds 11, can occur the undetactable distortions.

Example. Instead of number A=17 it is accepted A=(I, 2, 2, 0,

, 0).

A= 1.1155-; 2.1540 ± 2 .1 3 8 6 * 0. 3 3 0 -0.210-r2310=

=7007-6930 = 77 < 210.

Thus, A was obtiinmd as a correct number. The fact of distortion in

two digits was not discovered.

§4.2. Corrective properties of the special codes.

For the research of the corrective possibilities of the code

examined important value has the following theorem.
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Theorem 4.2. Let bases/bases Pi, Pze ... , p, P,+, the systems of

residual classes satisfy the condition

Pi < Pn+,,
i=I, 2 ... , n.

and let A=( alp =z, ... ,. an, a - correct number. Then value A
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is not changed, if we will represent it in the system of bases/bases

from which is withdrawn basis/base pi (i.e. if we in representation A

delete digit a,).

Proof. Inequality .4< -P to the absolute inequality
P:

A< pP, ..... pi-tPi. . . Pn+1,

and, therefore, number A can be in a only manner represented by its

remainders/resilues on these bases/bases, that also is claimed in the

A' theorem.

Dterminatlon. Let us name number A,, obtained from A by the

crossing out of digit ai, the projection of number A on basis/base pi.

Determination. The system of bases/bases Pl, P -... Pn. Pn+ t,

that satisfies the condition
Pi < P2 <... <Pn< P+t,

we will call th3 regulated system of ba3es/bases. Let us formulate

the following theorem.

Theorem 4.3. If in the regulated system of bases/bases is preset

the correct number A=(a, a, 0..... .i ...... ., +), then the projections

of this number in all bases/bases coincide, i.e.,
P

Ar = A2 um.. An . An+i < iPe+1
Proof. For a correct number under the condition the theorems
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take the place of the inequality

A < -- <-- ... < P < <Pp. p, p-- ' p '

pn+I Pn PiPt

and in accordance with the previous theorem value & will preserve its

projection on each of the bases/bases.

Theorem 4.4 (reverse). If in regulated system of the basis of

the projection of number &=(a&, a2, ---, .... ,a,- 1) in alU bases

coincide, then number A is correct.

4,
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Proof. Let us lead proof by contradiction. Let A an incorrect

number and in it be inaccurate digit ai. Let us replace it by correct

u,. We will obtain the number
A 4= lX* , ... i. .. - .

which, by hypothesis, is correct. Consequently, its projections are

equal to each other

At = 2 .. ..... t
But in view of the fact that A, ide tically coincides with .1 as

those composed of one and the same digits, then must be

...A,=Az.= ........4= ,

which is impossible, since projections Aj with jpi differ from A, in

terms of digit in basis/base pi and therefore A, cannot coincide with

Ap. Thus, is rtjscted assumption about the inaccuracy of number A.
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in a number of cases in the values of projections it is possible

to drutv conclusions about the ccrrectness of single digits. Thus, for

instance, occurs the following theorem.

n Theorem I4.5. If in the regulated system of bases/bases

projection At of numiber A=(ai , @a,., a,,., at,, a,, on basis/base

p, satisfy the condition
A >-, (4.2)

then digit a, is correct, if is pcssible only single (in the digit of

any on. basis/base) error.

Proof. Let us assume that digit a, is erroneous. Since the error

can be only one, remaining digits correct. Consequently, projection

A, as composed 3f the correct digits must be a correct number, and

this contradicts theorem condition. Thereby is proved the

groundlessness of assumption about the inaccuracy of digit a,

Corollary. if (4.2) occurs for all i=1, 2, *see ai, then is

erroneous digit ..

Proof. Let us first of all note that projection A,. is always a

correct number ind, therefore, for it (41.2) cannot have the places.



DOC = 81023908 PAGE

Under conditions of corollary is set consecutively/serially the

correctness of digits at, at, , a., and since the error

nevertheless is, it unavoidably is contained in digit a, 1
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Somewhat another character carries the following theorem, which

makes it possible to range of the cases the correctness of one or the

other group of digits.

Theorem 4.6. Let in the regulated system of bases/bases the

number
A =c(a. . ,, an+2)

satisfy the condition P <.4- p
Pn-t " Pj

then digits at, a,, x.., j on bases/bases Pie P2, -- , P.; correct,

if is possible only isolated error.

Proof. Let us first of all set the correctness of digit aj under
aj

theorem conditions. Let us assume that is incorrect, and correct is

digit aj. Let us designate correct number through t Then it is

possible to write, on the basis of the disintegration of numbers A

and ' in terms of the orthogonal bases, that

P,,= A + ((j--a,)Bj= A -(a --aj) nj .j
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A maximally possible value for value (cj--,)m,.LJ (throwing/rejecting

the wholes P) exists p'

Pi P

Number A could be correct, i.e., smaller than -L, only in such a

case, when from the introduction of correction in the form of

addition (aj-- )Bj It exceeded P. Meanwhile inequality (4. 3) shows

that by any possible correction of digit a, this cannot be achieved.

Theref3re, digit aj correct. Hence automatically follows the

correctness of all digits in bases/bases less pj, since inequality

A ,4 indicates the inequalities
<-P .. <L

but from each of these inequalities individually follows the

correctness of the corresponding digit.
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Obvious corollary of this is the fact that with J=n erroneous is

digit a,+,.

Let us give some illustrating established facts examples in the

system of the bises/bases: pt=2, p2=3, p3=5. p4=7, ps=11.

Example. Is transmitted number A=(1, 2, 2, 3. 6)=17. it is

accepted Im(I, 2, 2, 3, 7). For the detection of error let us compute



DOC = 81023908 PAGP

value A:

= 1.1155+2.1540 2.1386--3.330--7.210-r2310
=9467 - 9240 = 227.

Inequality 227>210 it establishes that Z is incorrect.

P
Let us compute

P 1155, - 770, -P 462. P , 3._o_
P1 P2 P3 P.

Comparing these values with A. we obtai.n, that A<P/p,, therefore,

erroneous is digit 7 on basis/base 11.

Example. Instsad of number &=(1, 2, 2, 3, 6) it is accepted

A=(1, 2, 2, 3, 4). We compute value A

A= 1- 1155- 2. 1540-2. 1386-3.330- 4-210 - r2310

=837- 6930 = 1907.

Vill compute the projections of number A.

Projection on the first basis/base i= (2, 2, 3, 4),

Orthogonal bases in this case have the fcllowing values:

B 1)= 385, B'") = 231, B,11 = 330. B = 210.

Pt 1 3.5.7.11 = 1155;

i= 2.385-' 2231 -:-3.330--4.210-155 752>210.

Projection on the second basis/base A2=(1, 2, 3, 4).

In this case orthogonal bases are equal to:

B'2'=385, B'S=616. B1'=330. B"'=210.
P,=2.5.7I11 =7-0

1- .385 -2 66--3. 330 - 4210 -,770 -367 21'
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Projection on the third basis/base A3-=(1, 2, 3, 1).

Orthogonal bases have the following values:

B' 3)=231. B -154. B,,3=330. B!1. =210.
P 3 =2.3.7.11 = 462.

A3=1.231-, 2.154-3-330 -4.210-r462 =59< 210.
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Projection on the fourth basis/base -,=(1, 2, 2, 4).

oethogonal bases for these bases/bases are such:

BI 165, B'4=220, B(4)=66, B(')=210.
P:= 2.3351;=330.

A= 1.1 65-2. 220-' 2.66-4.210-r330 257 >210.

Projection on the control basis/ba3e As= (1, 2, 2, 3).

We compute the orthogonal bases:
B")= 105, B"1 70, B35)= 126, B'"=- 120.

P3=2.3.5.7 =210.

A5 = 1.05- 2.70-+ 2.126 - 3. 120-r210= 17< 210.

Thus, among five projections of the number ^A1, 2  and '4

accepted they exceed 210, and 13 and As is less than 210.

Consequently, digits on bases/bases pl=2, pz=3, p,=7 are correct.

Erroneous can ba iigit on basis/base p3=5, or on basis/base p5=11.

The given ibove theorems made it possible under the appropriate
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conditions to sat, which of the digits was erroneouxs. Then the

correction of erroneous digit is realized very simply. Let in the

number Aaccepted be erroneous digit at. Designating the correct digit

through a,, let us write the inequality

A A P-

>1 ::~wence ' 44

According to formula (4.43) it is possible to compute the correct

value ofdgton basis/base pi, as soon as established/installed,

that the error occurs precisely in this digit.

Le suse this formult for the correction of erroneous digit in

examplas examined ibove, Let us find correct digit. in the first

example is accepted number T--(1, 2, 2, 3, 7) with the error on the

control basis/base. Let us determine true value of as
a5 I-I1(1 + 11) 227 6b.

in the second example let us find the true value of erroneous Aigit

from the control basis/baso
a5~=4+[ ~1

1 1 ~ 2!10 6.
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§4.3. Codes with two control bases/bases.



DOC 81023908 PAGECu

We saw that the introduction only one control basis/base does

not make it possible to in general localize erroneous digit. Let us

consider now, what discovering and corrective possibilities possess

the codes in the presence of two control bases/bases.

Thus, in addition to system examined earlier of the bases/bases

Pt, P2,.... Pn. P,,,

we supplement basis/base Pn-Z>Pn-i and we will represent the numbers,

which lie at operating range 0, ). at the system, which has range [0,

P) , where P=p+,pn.. P..

Subsequently range P we will call the full/total/complete range

of system with two control bases/bases. Correct we will consider, as

earlier, the numbers, which lie in the range 10, #).

Theormm 4.7. If is preset the system of bases/bases Pt, P2, ---

P., P.+,, Px+2 and If p from these bases/bases

Pil,, P . Pip (4.5)

are such, that Is satisfied the condition

Pik PiJ < P.+iPni = Pm.j+

the number , in which are erroneous the digits on all

bases/bases (4.5) or on the part of them, it is incorrect.

irn L - .. I _ _ - k '
•
. . .. -t m A' "
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Proof. If we consider Pi as one basis of system, and pt as one

control basis/base, then is observed condition Pj<P,,-, and number, in

which is erroneous the digit cn basis/base pj, it is incorrect.

However, the error in the digit on basis/base P can affect digits on

all bases/bases Pj, P 2 ... Pa, cr on the part of them. By this theorem

is proved.
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Since each of the control bases/bases is chosen large any of the

working bases/bases, then, whatever two of the basis of system P and

Pi, including control rocms, will always take the place

PiPj < Pn+iPn-, (4.6)

for any i, j=1, 2, ... , n, n+1, n+2..

Consequently, a number with the doable error, i.e., by the error

in the digits of any two bases/bases, will be always incorrect and

thereby the presence of error it can be established/installed.

Let us consider the examples, which illustrate the detection of

the 9rror in th3 system with two control bases/bases. Let us take the

system of bases/bases pl= 2 , p- 3 , p3=5, p,= 7 , ps= 1 1 , p.=13.

--
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Bases/bases p5 ini P6 we will consider zontrol rooms. The operating

range of system will be defined as f-2*3*57=210, and

fall/total/compLete range as P=-2e3*5*7-11e13=30030.

Let us compute the orthogcna] bases of this system:

31 = 15015, Bz = 20020, B, 6006, B, = 25740,

B5 = 16380, B6 = 6930.

Example. Is transmitted number A=(1, 2, 2, 3, 6, 4)=17. Is

accepted insteal of it number A=(I, 0, 3, 5, 6, 4). We compute value

A:
= 15 015- 2-20 020 - 3.6006-5.25 740 -6.16 380-- 4.6930-

-r30 030 = 287 733 -270 270 -= 17 463.

Thus, A>210. Iniccuracy A is discovered, although the error affected

digits of three bases/bases: 3, 5, 7.

Example. Instead of A=17 it is accepted A=(1, 2, 2, 3, 9, 7):

I = 15 015--;- 2.20020--' 2.6006- -3.25 740-- 9.16 380 --- 76930 -

- r30 030 = 340 217 - 330 330 = 9887.

Here error affa-ets both control bases/bises, the presence of error is

established/installed in vi.v of A>210.

Let us now move on for the examination of the corrective

possibilities of the adopted system.

Determination. Let us name number Aij. obtained from A by the

omission of digits on bases/bases Pt and P, by the projection of

number A on basas/bases P;, Pi.
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Can be foriulated the follcwing th3oram.

Page 169.

Theorem 4.8. if in the system of bases/bases PIP Pz, ... G Pn.

Pn+t, Pnz two bases/bases P,-, and Pn 2 are control rooms and if the

n u m b e r A (a n , O On .2 )

is correct, than all projections of number A on bases/bases Pi and

Pi are equal to each other and coincide with the value of number A,

i.e. = A <4 _

(with i, J=l, 2, ..., n+2, i/j) and vice versa, if all projections

Aj, numbers A ara aqual to each other and coincide in the value with

number A, then number A is correct.

Proof. Let A<#. We form projection on bases/bases pi and P, -

*'4. Since

then -P

= A, - A,

hovever, since A < P- P < P

pn-IP,7+2 P'pj "I
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that Aij= A for iny values of i and J.

Lat us show now that also vice versa, i.e., if all A, are equal

to each other, then A - correct number. Let us first of all show that

P. ~~Aij < "n'P

Since all projections Aj are equal to each other, then, in

particular, they are equal to projection A , .z which is less

P . Let us issume that A - an incorrect number and in it are
. . Pn 2n~

erroneous ligits c and M. Let us replace these digits by correct

ones and aj. Let us designate that corrected by digits q, and aj

number A through A. Since A - correct number, then all its

projections ara equal to A, including pcojection si,. But ;fjj=Aij as

composed of one and the same digits on the corresponding bases/bases,

therefore, has place and equality

AJ,j -*;--k , (47

where p, i, J tike values of 0, 1, 2, ... , n+2, moreover pij, itJ.

Meanwhile if we assume that - then -,I and A0  consist of

identical digits about to all bases/bases, excpt basis/base Pi, digit

on whi:h in them different; therefore (4.7) it is impossible. Hence

assumption ai=:, is invalid.

Page 170.

- - 14. -.. - ' .. ,Iik
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Aaalogously shows, on the basis of equality A1 =Aip, the

impossibility of assumption aji=aj. Thus, assumption about inaccuracy A

is refuted. A is a correct number.

Subsequently wa will assume that in the number A accepted car

occur only isolated error.

Theorem 4.9. If in system Pi, P2, --- , Pn. n'-" P-2 with two

z: ontrol bases/bases is preset incorrect number

A = (Oct. S2. ..... , n+i, Mn+z), then the necessary and sufficient

condition of the inaccuracy of digit ,; in A is the correctness of

its projection J on basis/base Pi- Proof. Let in the incorrect number

A be erroneous ligit i. we substitute it by correct a. As a result of

replacement we obtain the correct number Al whose all projections are

equal to each other and are equal to A, i.e., they are correct. Among

other things is correct projection A,. However, since A=A, then - is

correct; thereby is shown the need for condition.

Lat us demonstrate now sufficiency. Let A- incorrect number,

but a-- not erroneous digit. Then erroneous is any another digit,

for example j. Let us note that among all projections of number &

At , 'T. ',....., ... . + (4.8)
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there is at least 30e, which is an incorrect number. Actually/really.

if all these projections were correct, then it would be possible to

write the group of the equalities

2 i n+2. .. . . .,--. . ;nZ
-=A

Since in each group there are the coinciding elements/cells, the,. all

these projections, which compose the full/total/complete set of the

*projections of numoer A on any pair of bases/bases, are equal to each

other. In this :asa of A must be a correct number. But according to

the condition of present theorem In A is an erroneous digit.

therefore, assumption about the correctness of all projections A on

any basis/base invalid and among (4.8) is at least one incorrect

num ber.
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Let this be projection X. We form projection , in which is contained

incorrect digit a. Since A,. - correct number, then its projection Ai,

is also a corrg:t number. ButApi==A,., therefore Ap, is a correct

number. Let us replace into A0 inccrrect digit aj by correct aj. We

will obtain A, which is ccrrect, and therefore its projection .on

basis/base ), is also correct. But A0, and A as the differing only

in terms of values digits in basis/base pj cannot simultaneously be



DOC =81023908 PAGE 0

correct. Therefore assumption about the inaccuracy of digit w ith

the correct A invalid and error is contained in digit -a. By this is

completed the proof of theorem.

From this theorem escape/ensues the following algorithm of the

determination of arroneous digit. Are computed the projections of

number A from all bases/bases

X1, A2, , , .An 2.

4. Among these projections there is one X,< <n - Then erroneous is
Pn~tPfl+2

digit ai. After is revealed erroneous digit, its correction is

conducted through formula (4.4).

Let us not3 that the latter/last theorem can be used for the

correction not only isolated error, but with some conditions also of

double and triple errors.

Let us give the example, which illustrates formulated above

algorithm in the system of the bases/bases

Pt= 2 ; P2=
3 ; P3=5; P4 =7; p5=11; p9=1

3
.

Example. Is transmitted number A=(1, 2, 2, 3, 6, 4)=17. Is

accepted number A=(1, 2, 2, 3, 1, 4I).

We compute A

-r30 030 = 8207 > 210.
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The presence of error is established/in-3talled.

Will compute the projections of number A according to each of

the bases/bases.

on basis/base p1=2.

For the systemn with the bases/base3: p2= 3; p3=5; p4=7; ps=ll;.

p0= 1 3 let us compute orth~ogona~l bases BI.0=50u5.B B~6M;, B'11 025;

B"=1365; B' = 6930.



DOC 61023909 PAGE A77

Page 172.

Then

.41 (2, 2, 3, I. 4)=2.5005-2.6006-3.10725 - 1.1365+
-4.6930-ri.15 015=8207 >210.

On basis/base Pz=3.

4,

For the system with the taseE/bases: p,=2, P3= 5 , r.=7, :s=11,

po=13, let us compute the values cf the orthoconal bases: B121=5005. B3=

6006. B ) 
= 5720, B12 - 6370, B,1'1 = 6930.

Then
(.2. .3. . 4)= 1.5005 -2.6006-L3.5720 1.6370 -

-4.6930-r10010=8207 >210.

On basis/base p3=5.

Wq obtain the system: p,= 2 , F2=3, p,= 7 , ps=11, p6=13 with ths

orthogonal bases: B')=3003, B'1=2002, B)="1716, B - 4368. 3

Whence

A3 !1, 2.3, 1, 4)= 1.3003- -2.2002--3. 1716- 1.4368-

+4.924-r 3.6006=22201 >210.

On basis/base p,=7 .

- *-- ------"--- .~- ~ .adA~ -~~ ~ biU~h~ii~iiDI
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We have system with the bases/crases: pt=2# P2=3 f p3= 5 , ps=1 1

p6=1 3 and by the orthogonal bases : Bi,4)=2145, B124 -2860, -B(4 '16, 8(5i)'3510, B,($)=2640.

A 4 =(1, 2, 2, 1, 4)= 1.2145-2-2860+2. 1716-.- 1.3510-4-

-- 2640-r 4 -4290=3917 >210.

on basis/base p5=1 1 .

we will obtain system with bases: pi=2 , p2=3 f P35u P4=7, o13

orthogonal bases of the systp~ ~l6 =~'910, B =546. B'5'=1170, B(6'=1470.

Te n
., ( 1. 2. 2. 3, 4) 1. 1365+2 .910-2 -W - -. 1170- 4. 1470.-

-r 5 -2730= 17< 210.

on base p6=13.

System has bases/bases: [1= 2 f F2=3 f v-3S p4=7, Ds= 11 and .-he

orthogonal bases: B(61=1155; B.()=1540, S "=1386; B=3X0 h"=210.

Then

14-~, 2. 2. 3. 1)=1 1155 - 21540 - -1386 -3.330 -

-- .210-ro2310= 127-7 >210.

Thus, all projecticns of numter A, except TS are incorrect.

Consequently, is erroneous infra a5=1 on base p5=11.

Let us lead now correcticn acccrding to formula (4. 4) -'Or
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projectior. As:

Z = I1 .3) 8207 -
I- -'I = 6;13 - 1365 . - ;

Corrct digit on base 11 is equal to as=6.
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From the character of examined codes is visible their

full/total/complete arithmtic nature - introduced additionally bas=s

are connected with the gen.ral/ccmmon/ttal system of bases/bas-s an

the cod3.s, containing digits cn all both basic and chec.K bi-.s, .h~v

participate in any operation cf arithmetic unit, processinc cf basic

and further digits it is produced completely in an identical way,

without any difference. This ffakes it possible to consider that

processing the informaticn, represented in of tais type the spacial

code, can be conducted without the check of each single ccde, .-A

is only step by step, the value cf each stage can be determir.ed in

each individual case, either or. fcre-and-aft cycle of processin; or

in the conformity with probability of the emergence of isciatc'!

error. The final result cf each stage can be subjected to check and

its correctness confirms the ccrrectness of the carrying ou- of ill

operations of this stage.

In the cass of the detecticn cf tha error is produced th-.

correction and corrected result participates in the subsequent
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stages. Possibility of this mcdp/conditions of procsssirg th,?

infoermation is equivalent to dcutle error f or detection of qtro:r and

to triple error for its ccrrecticn.

It is interistirg tc note that 'he introduction only of cne

control basis/base, proves tc te, rrake it possible to discovar no-t

only any isolated error (in the digit on one base) but also 95o,/: :1_

double onps (in the digits of twc bases/bases).

§4.14. Q uestions of th~z ccntrol cf arithmetic cp'rations.

Almost all elementary aritimetic operaticns can be considered as

two-comonet. Lat us designate the i-th eliamentary operation th-rcugh.

E1 , and its components - througF Aj and B; let us register cpqratio.

in the form

Ei f i(AB)

(in particular, can occur IB.

Let us name circuit F the set of the operations abovf. componenrts

a1, a2 .  an,-
F (a,, a,,. a,),

which can be represented in the form of the superposition of such

two-component operations xith the possible repetitions both Cf very

a,, and intormediats results of executing the two-component
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operations.

Page 174.

It is assumed that in the circuit of operations there ar . no

interruotions/(iiscontiruities, understanding under this the fac'

that, with exception of final result, there exists no interadiat.

result which subsequently wculd nct enter as the component at liast

into one two-component cperaticr.

Thus, for instance

F (oa, a . ,) = aja2 + a, .. + + a.,_,a,,

is cirzuit in tnat sense as this was determined above.

Actually/really, it is possible F to register in the form of th9

superposition of the twc-compcnent operations
F= 2{... f2 l 2 (a,, a.), j,(a2, a3)1, J,(a 3, a,) .

where f, - operation of multiplication, f2 - addition.

Logical to introduce intc determination cf circuit stipulation,

that precisely the result of calculation all over circuit is the

final interesting us result, but all cthers, which are formed in th

course of calculations, irtsrzediate results, which do not havi

independent value and us interesting inasmuch as th3y particica: . .- n

the formation of final result. Therefore, if in the intrmedia9:
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results arL. ccntained the 4rrors, which can be corr-cted as a final

result, it is possible tc be bcunded to the ccrrection only of this

latter/last result, withcut being ccnverted to the history of its

obtaining and without prcducing the restoraticn/reduction of thv- true

values of intermediate results. Ir cther words during the wcrk of

comput:r must b= provided obtaining the true value only of the firal

result of calculating the circuit.

4i Additionally is put forth the following assumption: in the

implemantation 3f circuit can cccur the error only in the dii:t of

one basis/base, i.e., length cf chain is such, that with the existing

characteristics of the reliability cf the work of the equipment for

arithmetic unit is probable the presenc,4 of short duration failure or

failure only on one of the bases/bases. With this unimportantlv,

whether occurred on this tasis/tase single short duration failure or

occurred spveral failures.

Under the assumpticns presented the state of the final result cf

circuit is characterized as fcllcws.

Page 175.

Let be imolemented a cprtain circuit of rational operations whose

true result in the case cf the absence of the errors in the course of
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calculations must bq a correct number, and let in the proc'ess of

calculation occur one or several shcrt iuraticn failures on on? of

the basis of system. Then the final result of circuit either

incorrect or true.

Actual!y/: ally, !rt be is accepted th-i rapresentaticn

representation in the systems of tases/bases Pi, P2. p, p,, - t. i*

result must be number K=(x,, x....... . ..... .- O, ani is obtained nimber

= A= 1 ... .. r shcrt duration failure they cccu rcd c!

base p,. thIn

Concrning ai, then the possible two versions

2) ai = xi.

In version 1 number A is irccrrect in version 2 number A c4:r ct

and in this casa coirciding with K, i.e., A is the true value of *

final result of circuit.

Establishei fact, it would seem very simFle, it has, hcw.ve r,

important value for organization cf control in the computer, which

works in the systam of residual classes. It attests to the fact that

in the final result of calculating the :ircuit cannot penetrate tha

undetected error, since thiss could occur only when the result of

calculations would be corrqct, but at the same time not true numbpr.

However, correct nrmter can be cnly true result.
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Thus, error, if it in any stage of the realizaticn of circuit

occurred, sither will be preserved to the end of the calculation of

circuit and will show itself ty tle easily detected inaccuracy -If

final result or in the rrccess cf furthar, after its emergence,

calculations it well self-elim-nata and thzn is obtained necess -v

final rpsult.

The withdriwal of error can cccur not only in the case of the

iMposition of several shcrt duraticr failures on this basis/has=, hu1-

also with the single short duraticn failure.

Page 176.

Thus, for instance, if in any s ace of the calculation of circiit

already after the emergence of shcrt duration failure cn tasis/bas?

P intermediate result was multiplied by the -umber, which has zero

digit on p, then, obvicusly, Frcduct will be cbtained the true nuoob:.

and the same already it will enter into the subsequent calcua-:ions,

which in the absence subsequertly of short duraticn failures,

naturally, will lead to obtaining of true final result.

Until now, spearing about the rational operations, bcrc n i
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the operation of addition, suttraction, multiplication and the cases

of the step-by-step irplemented division when dividad multiply to

divider/denominator are absent critical situations in the form of

zero digits in the divider/denouinator.

Somewhat apart among these crerations frcm the point of vi--w of

control is located strictly the operation of the machins approximate

division in general. As we saw, in the implementation of thp various

kinds of the algorithms, connected with the division, the dominant

role plays the operation cf division into the basis of system.

Let us consider how is reflected in the quotient the presence of

the error in the dividend with the execution cf this operation.

Assume we should obtain quctient C=A:p, where

A = (a, a ... 2- ... o,+ Since in the system of residual classes

4 division must be implemented only completely, the dividend must be

multiple to divider/dencminator, i.e., have zero digit on bas. Pi.

Therefore, if a;*O, then instead cf A as the dividend is taken

Aa = A-,

that being closi to A multiple pj number. Then

PM (Yi. .... Ti-i2 Ti, Y i. .... . ,

where

it + Pj- (mod pl),
P.
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and Vi - the digit of quctiqnt cn Pj- is determined on one of the

methods, presented in Chapter 3. It is import ant to note that any of

these methods in this or cther form considers the values of all

If in the process ef calculation A occurred the error and

instead of A in the calculaticns figures number

~ ~ then as the dividend will be accepted the

number

and quotient will prove tc be equal.

* Page 177.

*.. , - -

If in A is an error on one of bases/bases Pj,' then this error in

different ways will be reflected in the quotient in cases when i

and i=j. Let us examine them.

Cise 1. Let ij. occur the relationships/ratios

The here obtained quotient, as a rule, differs from true in digits

* already in two bases/basesQ:
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- On base P,. since in the dividend was erroneous digit A1, what,

naturally, involved inaccuracy 7i, and

- cn base Pi, since in view cf the oresencs of erroneous digit

aj in A there will be, generally speaking, is erronecusly deta_-ined

digit 7I. Exception/elimiratior they can compose such errors in Pi,

which do not vary the digit of guctient on pi. This is possible with

very special combinations of digits A which are encountered

sufficiently rarely.

Thus, the guotient ' is already containing errors on two bases,

what exceeds the scope of the examined/considered by us situation -

the assumption that the error in numbers affects only one basis/basB.

Furthermore, quotient can prove tc be the correct number, although

which differs in terms of two digits from true.

Case of 2. Let i=j. aere picture sharply varies.

'I Y,: Y;.. • j ;j -+ t; T. + I*y.t .

For the digit of quotient on tasis/base-pj it can be

• J , YJ
or

Y, = s
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Page 178.

In view of the fact that due to the inaccuracy of digit a

incorrectly is formed A., on all digits, they prove to be incorz5ct

and all digits of quotient, with exception, perhaps, only diit i'p,
%S

which during some combinations of digits A,~e can prove to be that

coinciding with V: In this case the quotient can prove to be a

correct number.

A Thus, case of 2 leads to the quotient in which the error

distribution even more differs frcm the accepted by us assumption

about the inaccuracy of digit cnly in one basis/base.

Questions of the development/detection of a similar kind of

multiple errors and their correcticn require special research.
4

Certain assistance in the solution ef this question can render the

following theorem.

Theorem 4.10. If during the division of incorrect numberAi.a

into basis/base Pi quotiert i_-- 2" was obtained by a correct number,
ep

then when PkPt+I- digit a cannot to erroneous.
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Proof. Actually/really, if occurred into A error on basePi, then

P "

In this case ths quotient

Pie P! pf+

must be an incorrect numb4r. Since C according to the conditicn of

theorem - correct number, proves tc be invalid the assumption about

inaccuracy ';.

I

From this theorem escape/ensues preference, in the known sense,

small bases/basas as the dividers/denominators during the

organization of division.

§4.5. Alternating nature cf correction with one surplus basis/baso.

Ginerally speaking for the correction of the error for the

74, introduction only of one surplus tasis/base it is insufficient.

However, there are cases, when in the presence only of one ccntrol

basis/base nevertheless it is possible to unambiguously

* 'establish/install erronecus digit.

Page 179.
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It is earlier, speaking abcut the possibility to be boundel to

control and correction cnly of the final result of calculaticn, we

they had in mind the presence of that entire redundancy in the cod3

representation, that was necessary for the correction

isolated/insulated the undertaken number.

Let us now lead detailed research of the possibiliti.s of

*organizing the correction in the presence only of one surplus

basis/base in the section/cut of the dynamics of computational

process, i.e., by examining the character of error distributic-a in

the results, consecutively/serially cbtained in the implementation of

program.

Determination. Let us name this incorrect number A a k-

alternatively corrected (or simply k-alternativa) number, if thei-;

are k Of such correct numbers A,, A2 , ., A,, each of which differs from

A in terms of digit of any one Lasis/base, moreover these bases are

different for different; Ap. ? 1, 2, ... ,k ).

* The set of bases/bases (pi t'P, ..... P,)' in which numbers

A,, A, ... , Atdiffar from A, let us name the alternative set of number A

and we will designate W(A).

Let us note that basis/base P., always enters into the

K.
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alternative set of any nuubcr A. Actually/really, whatever first n of

the digits of number A, there is always this digit on basis/base Pn+,

that the number, which has on basis/base P-t digit'4, lies/rests in

the range [0,. ) being a correct number.

From this zircumstance it is possible to do, in particular, a

*; conclusion about the advisability of increase in the implementation

of arithmotic units by purely technical means of the higher

reliability of operation precisely of those diagrams, which are

realized operations on basis/base Pn+a-'During this organizaticn of

work of the arithmetic units when the error in basis/base Pn+" is

unlikely and, therefore, tase P,+i can not be built-in into the

alternative set frequently it can seem that the alternative set will

consist of one basis/base and tte ccrrection cf result will be

simplified.

4

Alternative set I of number ~  can be

established/installed by testing each of the tases/bases p (i=1, 2,

... o n+1) as follows.

Page 180.

Are comput3d all pcssible values of number Ap, is determin.d the
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sequence of the numbers, which have one and the same digits on all

bases/bases, as number A, besides base.Pp. and differing only in terms

of digits in this base, i.e., the number
Av. =(a;, ... , a j S9 c j ... 9 cc1, n +j)q

S=0, I, .... PD-L.
Among these a number it can nct be one ccrr.ct number, or therf

can be only one correct number. Ir the latter case P, it enters into

the alternative sat of number A. After leading analogous testings for

each of the basis of system, we determine comEletely %(J).

This way of determining the alternative set of a number A is

sufficiently labor-consuming and subsequently will be given mcrq

efficient method.

Let us preliminarily consider the example, which illustratas the

concept of alternative set in the system with the bases/bases

P1=2; p2-3; p-5; p-7; p5 -Ii.

4 Example. To determine the alternative set of the number

2,2, 5,6)-677>210.

It is checked basis/base pl=2. We compute the value
Age. (0, 2, 2, 5,').

'A1o=Ox 1155+2 X 1540+2 X 138-+5 x 330+6 X 21O-

-r 1 .O-2310-1832>210.

Consequently, p,=2 does not enter in .

Is checked basis/base p2=3. 1we compute hAo and A2 j.

A20-(1, 0, 2, 5, 6)1 2217>210, An(, 1, 2, 8, 6)-1447>210.

&
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Basis/base pz= 3 also does not enter in v().

It is checked basis/tase p3=5. we compute values of &,., A 3 t,

A33 and 4,:
A3o=(1,2,0, 5,6)=215>210, A3t=(, 2, 1, 5, 6)=1601 >210,
A (1,2, 3, 5, 6)=2063>210, A34  (1, 2, 4, 5, 6) I139>210.

Basis/base p3=5 does not erter in z().

It is che-kad basis/base p,=7. Let us calculate values A, A41,

A4,2 A43, A,#, A46.:' ~~A4 (1, 2, 2,0, 6)= 1337 >210, A3=(1, 2, 2,3, 6)-=17<210,

~~~~~A4,=(l, 2, 2.,I,6)= 1667 >210, A"=(1, 2, 2,4, 6)=347 >210,
A"=(J, 2,2, 2, 6)-J997>210, A=-(I, 2,2, 6, )=J007>20.

Page 181.

Base p,=7 ant-rs in N(T; and if error occurred precise-ly cn base

P4, then the true digit cf number A on this fcundation for eating 3.
4

In accordance with that presented above into alternative set

enters also basis/base ps= 1 1. Thus, number A is a two-alternative

number and the xlternative set cf number A=(1, 2, 2, 5, 6) is defined

as 1A -r(7, t).

Let us consider the theorems, somewhat inswept the field of the
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searches for the alternative set of a number.

Theorem 4.11. Let be preset the regulated system of the

bases/bases

P1, Pz, .. Pn, P,+t

and let inccrrect number A=(c , ... , * satisfy inequality

-+i P-i.Then bases/bases P,, p2,-.., pj io not enter into alternative

set (i of number A.

This theorem although gives the possibility to narrow down tht

framework of the search for the alternative set of number A upon the

satisfaction to inequality A<-L, it makes it possible to make no

conclusions in the case A>L relative to that, does enter pj in %(X).

Therefore let us formulate and will demonstrate fuller/more

total/more complete theorem.

4 Theorem 4.12. Let be preset the regulated system of tho

bases/bases

P, P2, . Pa, Pn i

and let be is preset the inccrrect number A vhose projection on

foundation for p, eating A'. Then the necessary and sufficient

condition of entrance Pt into alternative set W(A) is the correctness

of projection A.
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Proof. Actually/really, let us suppose projection is a

correct number.

Page 182.

Sinc-3 m ong the sequence cf numbers "i' 1.o 1,..A,, 1 is always
P

contained number Aji, is smaller Tthis number is equal to

pro jection. A, since projection Ai, through supposition, is locatedJ in

the range L,)and digits/l ccincide with apprcpriate digits

* (with exception, naturally, digits in base pt).

1l numbers of sequence differ from At~ to different uultipla

ones Baz=-2Ti.~.any number of thi.s sequence, in the rate and .,it

can be register3d in the form

T7km P pp
Pi Pi PfA .

Here kmj=i1o,±K is substituted on K, since

Pp

comprises a number, multiple to the range P accepted. It is obvious,

K to Pat nothing else but integer part of division of A on -ani,
Pt

therefore,

=,T-[ -X1 P(4.9)

Thus, if XA- correct numter, tbeD among numbers TA~. ~,,is

contained numbar ;j1, which is a correct number. i.e., pi entqers into
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the alternative set of number A. By this is established/installed the.

sufficiency of condition.

Lat us now show its recessity. Let pt enter in T(A. Then among

the sequince of numbers Am ....- must be contained correct, i.e.,

is smaller Plpn+ , a number. This car be only At<Pp , sin;e sach of

the remaining numbars of sequence is more than P;p and is as of old

more than P/Pn+p. But 4 Ccnsequrently, A1 : must be a correct number.

Let us use the proved theorem to the solution of the previous

example.

Example. To determine the alternative set of the incorrect

number A=(1, 2, 2, 5, 6)=677>210.

Page 183.

We compute the projections of rumbear A according to formula

(4.9) :
r 677.21 2310

A1=677- - =677>210,
L 231, 2
r 6-7 3 2310A2=677- )-- = 6772210,L231 j

A3677- 1 2310

A, 677--F 67771- 2310
A'=67 23 2310 j 4 =677-2.330 17<210,

A3 677 I 2310 5 67 320 4< 1)
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N
Into altsrnative set numbers A enter bases 7 and 11

a (A)=(7,II).

it is here expedient to again emphasize that when the incorrect

number A undergoes subsequently tc different rational operations with

the enlistment of other numbers (Fredicted correct ones), then the

results of thes- operations will te either true or incorrect,

moreover in the latter case ot errcneous there will be digit on that

basis/base, on which there was an error in A. In other words as a

result of the fulfillment of sequencp of operations with ths

participation of the inccrrect runber A the error can either be

reduced or remain on the spot, but by no means it cannot move into

the digit on one or another basis/base. However, as far as aggregate

of the results is concerned alterrative of operations, then it can

differ significantly from the alternative set A.

Let us consider changes in the alternative aggregates of the

results of arithmetic operaticns. In this case we will be guided by

the following agreement.

Agreement. In the circuit cf the operations, implemented by op

to real program, the latter is ccnstructed in such a way that all

intermediate results, just as final result, in the case of the

absence of the errors in the course the implementations of program

are correct numbers.
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This condition is completely lcgical for the correctly

constructed program, since prelivioary scaling must ensure ths

nonappearance of the results cf calculations teyond the limits of

operating range.

Page 184.

Determination. we will call the arithmetic operation cf correct,
-4.

if operands and result cf operaticn are ccrrect numbers.

However, concerning our direct target - carrying out of

corrqction, ths for it fcrmulated condition it can make that sense,

that, after taking hypothetically any of the alternatives for the

true and after leading ccrrect4cn in the confcrmity with this

hypothesis, we in further course cf the program must discover the

unsoundness of the incorrect bypcthesis, i.e., to obtain on some one
4

from the subsequent stages an incorrect number. It is obvious, in

this case it is assumed ttat the test of hypothesis is producel

during the period when is excluded the possibility of the emprgenca

of new short duration failure.

Let us consider the fcllcwing theorem abcut the character cf the
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alternitive aggregate of the results of operation.

Theorem 4.13. If in the regulated system of the bases/basis

Pt, P3, Pn Pm p;+t

is preset the incorrect numbftr A. which has the alternative set

(A II P1, - -,Pit),

and i4f with the 9xacuticn on cumber A Of raticnal operation according

to the program obtained the imccrrect number B whose alternative set

was equal to

% B (P'ai Paz... Pfig),

then erroneous there can be digit on any of the bases/bases

where the multiplication is understood in the sense of intersection.

Proof. Let us first of all ncts that among the the alternativa

sets W(3)and,__(B).is always cortained basis/base P1, on which occurred

4 the error. Thus, if in W(A) there are such bases/bases, which are not

in.%(), and vice versa, then, obviously, among such bases/bases is rot

present basis/base Pu-- it can be cnly among those bases/bases, which

are general/common/total for 'WA and WA8, among intersection.

Page 185.

Definition. By conditional alternative setj!R(A) of the incorrect
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numberl Vwe will understand the set of bases/bases, on which is

possible the error, takirS into account the character of the

alternative sets of the previcus incorrect results on the course of

executing the program.

If consecutively/s.r ially were obtained thq incorrect numbors

that

I 11 (A) IX (Ar(X (A,

or in the recurrent form

To the expressel above assumption that the reception of wrong

hypothesis from the alternative set must with the large probability

lead to the incorrect result and which thereby only valid hypothesis

ensures the correctness of results in all stages, in the terms of

alternative sets it corresponds assertion, which with the same dsgr.e

of probability in view of the cccurring consecutive judgment of th_

conditional alternative aggregates of the results of cperaticns

exists such p, with which

TI (A.) =(pI,

where p,- the basis/base on which occurred the error during

calculation A. These two judgments ccull be considered equivalsnt, if

not the fact that surplus basis/base PN+i always enters in I(A,) end,

therefore, whatever was ccnducted as results cf sequence of
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operations the contractic of ccnditional alternative set to

erroneous baseP nevertheless there will together with .0 figure

alsc 'P+i.

Page 186.

In acccrdanc with that presented it is th4 possible to

determine several methcds of crgarizing of control and correction of

the errors:

*. - one path consists in the ccnsecutive determinations cf

conditional alt3rnative sets xn the course of execution of program

* and their contraction tc the orrcnecus basis/base;

- another Path consists cf the reception of any hypothesis on

the alternative set of number A, the carrying out of correction on

4, this hypothesis and the execution of further calculations until the

detection of the groundlessness of the hypothesis accepted and

transition to another hypothesis. If in this case the groundlessness

of the hypothesis accepted is not showed, then the obtained results

are accepted for the true cnes;

- is feasible and the third Fath - synthesis the first two

methods. Are ccmputpd ccnditicnal alternative sets a number, that are
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obtained in proportion to the implementation cf program, up to their

contraction in number A0 to bases/bases P4 and Pn+,, after which is

accepted the hypothesis of the inaccuracy of digit on base p and is

conducted its correction in number AP.The detection of the

groundlessness -f this hypothesis determines th3 inaccuracy of ligit

on basis/base P+a.

Aout to the methods of conducting the correction prcpcsod it is
I

* necessary to do the follcwing ctservations:
4.

- in all cases it is assumed that the realizable circuit of

operations possasses a sufficient length, which allows performance of

all intended procedures tc the ex.austion of the operations of

circuit:

- for all methods desirably tc obtain either probabilistically

analytical or simulation the evaluation of the period (in quantities

of operations) of the stable realization cf procedures (contraction

of conditional alternative sets, disproof or the confirmation of

hypothesis, etc.):

-in the case of receiving the erroneous hypothesis when

correction is not substantiated carried out on basis/base Vt whila

erroneous is p,, a number proves to have already two errors: on known
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basis/base pj, as a result of the introduced by correction distortion

and on to be determined base P, where the errcr actually aros- as a

result of short duration failure. tn this case is required return to

an erroneous number.

L~t us considir so3e examples in thq system with the bases/bass

pI-2; P=-3; ps=5; p4=7; ps=,jj.

Example. Let us compute the value of function Y=2x.
4

Let on the previous stage be is calculated the value

x---(1, 1, 3, 1, 1)--463 > 210.

Page 187.

Number x is incorrect. we determine its alternative set:

4 A, = 463- [4.2_ = 463 > 210.

463.3 2310
A2 =463 - 2y310 -3 - - 463 > 210,

A = 463- [- T5 ] -T-0463-462= 1 < 210.463-7 2310
A3=463- 2--- -=463-J3=133< 2u.

r463-1 2310
A5 -463- 4631J -3- =4 6 3 -42 0= 43 < . i0,

one

I (x)=(5, 7, I11).

ge compute value of Y=2x:
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Y=(O, 2, 2, 2, 2)(, 1, 3, 1, 1)=(0, 2, 1. 2, 2)-=926 >21u.

Analogous with previous we determine:

AI=926>210, A2=156< 210, A3=2<210,
A.-=266>210, A5=86<210,

, (Y)=(3, 5, 11).

Then conditional alternative set is defined as

" (Y =( -(3, 5, I11)(5, 7, 11) -(5, 11)._

Thus, erroneous is digit either on base p3 =5 or on base p5=11.

If error does not contair digit cr basis/base p5=11, then furthsr

convoluticn of conditional alternative set in tne process of th-

, Isubsequent operations it is impcssible.

Lat us consider, that gives under conditions of the e.xampl3 in

question reception of hypcthesis abcut the erroneous digit in nurser

x before the calculation cf value of Y.

1. We assume that erroneous was digit on basis/base p3= 9 . 'e

carry out ccrre.tion x. We obtain

We compute
-2x-(0, 22, 2, 2)-2< 210.

The grcundlessnass of hypcthesis was not disccvired.

2. we accept inaccuracy of digit on base p,7. do obtain

- (1. 1, 3. 0, 1)=133,
f- = (0, 2, 1. 0, 2) 266 > 2 10.

Li
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Is discovered the groundlessness of the hypothesis accepted.

Digit on basis/bass p,=7 cannot be erroneous.

Page 198.

3. Let us take now erroneous digit on base ps=1l we will o)btain
z(.1, 3, 1, 10)=43,

YF=2x=(O, 2,1, 2, 9)=86< 210.

The inaccuracy of hypothesis is not confirmed.

Under conditions of this example both methods led to one ard the

same result - was excluded the inaccuracy of digit on basis/bess

Thus, this simple operaticn, kA the doubling of a numbor, mads

it possible to narrow dcwn the trauewcrk of the search for erroneous

digit.

Example. Is computed the value of function Y=6x. Number x thr-

same as in the previcus examplo, avid Z(x)-(5,7,11).

We computs

Y-6; (., 01, 6.6) (1, 1, 3. 1.1)=(0, 0, 3, 6, 6) -468 >210.
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We determine:

A1 =468>210, A2=468>210, A3=6<210,

Ai=I38<210, As=48< 210,
I (Y)=(5, 7, 11).

Conditicnal altarnativo set is defined as

Z I(Y)=(5, 7, 11) (5, 7, 1)=(5, 7, 11).

It no new infcrmation about the pcssibla localizaticn errcr obtains.

To other entiroly results it leads correction method on the

hypotheses.

1. We accept erroneous digit cn basis/base p3 =5. The correction

of digit cn this basis/base brings to
" " = -(1, 1,, 1, i)(0, 0, 1, 6, 6)=(0, 0, 1, 6, 6) -6<210.

2. we accept erroneous digit on base p,=7. This it gives
17. 6X ,,(, , 1, 6 6) (1, , 3, , 1)=, (0, , 3, , 6) -=798> 210.

Consequently, on foundation for F4=7 of error being it cannot.

3. Finally, it is permitted inaccuracy of digit on base p5=11.

This it gives

7=6=(0, 0, 1,6, 6)(, 1,3, 1, 10)=(0, 0,3,6, S)--258>210.

fhereby is excluded the possibility of errors also on basis/base ps.

Remains only possibility - error it took place on basis/base C3= 5 and

true value Y is (0, 0, 1, 6, 6).
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For purposas of the decrease of ths capacity of conditicnal

alternative set and realizaticn cf its more rapid contraction to

actually errcnaous base can prove tc be highly useful the following

theorems of particular character.

Page 189.

Theorem 4.14. Let in the regulated system of the bases/bases
, Pi, P2,..., Pn, Pnau

be is preset the incorrect number

moreover it is known that basis/base _y'enters into alternative set

S (J)of number -A. Then if in the Frcduct

C=BA,

where B - correct number with the zero digit cn base Pi, will Frovo to

be that C - incorrect number, digit oaj on base Pi is not erroneous.

Proof. Actually/really, if digit i would be erroneous, then in

C this error must self-eliminate, since regardless of the fact which

digit a; in C, it gives cn basis/tase Pi zero, and C must be a

correct number. But C prcved to bE an incorrect number. Consequently,

a4- correct digit.

On the basis of this theorem basis/base P, can be excludid from

IL
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*W(c), if it there enters.

Example. Number A=( I , 2, 2, 5, 6) has alternative set (A*)I7,11).

* As thz? multiplier let us take number 3=(1, 2, 1, 4, 0) =11. Let

us compute the product

%=BA =(1, 2, 1, 4, 0)(1. 2, 2. 5, 6)=(1, 1. 2, 6, 0)=517>210.

We find the alternative set:
"'517 - 517.2 ] 2- =517 >210,

Z!2=517-[ 23 =517>210.

L2310 -3
3 - .517.71 2310

Z!=517--7] 2=517-330=187<210,
r 3 57111 231

- -'517 - -  =517- 420=97 < 210.

I2310 .j 11
Whe nce
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Consequently,

(c)(7, 11) (5, 7, 1)=(7, 11).

On the basis of the previcus theorem it is possible to exclude from

1 (C basis/bas3 p5=11. thereby to shear/section we localize

*unambiguously the error: in A is incorrect digit 5 on basis/base p,.

Note. Is here carried out multiplication by B on the assumption

that it enters into program in accordance with the formulated above

agreement.

The otherwise carried out operation and the revealed inaccuracy

of digit on basis/base p,=7 wculd not have real sense. Since for the

separately undertaken number possibilities of errors on any of the

bases/bases, entering the alternative sat, are equal, then by any

artificially introduced operation cannot be set, what in reality must

be a true number. Only the operations of real programs, which

satisfies agreement, on which must be treated a true number, cam come

to light/detect/expose the occurred error by only manner carry out a

selection of the necessary correction of all possible for this number
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corrections.

Theorem 4.15. let in the regulated system of the bases/bases

Pi, P2, ... Pn, Pn+i

preset the incorrect number

with alternativ3 totality %(A), into which enter basis/base pj and it

is preset, that in the case of receiving the hypothesis of the

inaccucacy of digit c; on basis/base pj the latter must be corrected

on cj. Then if luring the calculaticn of certain rational integral

function f(A)

f (1)(Y v,, ., ..V.. v ,

of such, that

= (M;) = f (aij),

we obtain as a result the inccrrect number C, then digit a; cannot be

erroneous.

Proof. Actually/really, if digit a; is erroneous, then correct

is digit aj. That as during calculation C digit ,; is the same, as if

in A on basis/base pj there was correct digit, aj, the C must be a

correct number. thsreby the fop of inaccuracy F refutes assumption

about the inaccuracy of digit a.

Page 191.



DOC 81023910 PAGE 31I

Example. In the system of bases/bases pt=2; p2= 3 ; p3=5; p4=7;

ps=11 number a=(1, 1, 3, 1, 1) =463>210 it has alternative set

aI (J) =(5, 7, ii).

Lit us compute the alternative set of the number

C=(A)2+31.

Let us compute value

, =(1, 1, 3, 1, 1).(1, 1, 3, 1, 1) - (1, 1, 1, 3, 9)

(0, 2, 0, 4, 10) - 1880 > 211.

As it is easy to count, the alternative set of number C is equal to

()=(5, 11), whence the conditicnal alternative set

% ) (5, 7, 11) (5, 11) = (5, 11).

For refinement i(c) ve check in accordance with the previous theorem

digit on basis/base ps.

we note that after allowing the presence of error on basis/base 11 we

will obtain for the corrected digit value of 10. we compute on

corrected digit 10 the appropriate digit C:

(iO + 9) (rood 11) = 10.

It coincided with the calculated digit in C in basis/base ps. With

this C - incorrect number. Consequently, in A digit a$=1 on

basis/base ps correct and basis/base ps must be excluded from j(). Ve

- ~ - .~ .



DOC 81023910 PAGE

obtain ()=(5), that consisting of one basis/base. It here proved to

be possible to completely localize error.

§ 1.6. Logical strengthening of ccntrol basis/base.

Above it wis astablished/installed, that surplus basis/bass

always enters into alternative set how is determined the

impossibility of the single-valued contraction of alternative to

4, erroneous basis/base, if short duration failure occurred not on the

control basis/base. It is possible only indirectly to judge the

inaccuracy of ligit by basis/base pj, when for the elongation/extent

relative to the prolonged secticn of circuit alternative set does not

subtend to p,+,, and it remains that containing pair (pj. p,+,) since, if

error affected basis/base Pn- , alternative set must compulsorily be

tightened to P.+,. However, similar indirect criteria can require the

presence of long circuit for the testing for contraction to Pn i and

they cannot completely exclude the cases when conclusion about

inaccuracy pi is not justified.

Page 192.

Therefore it is expedient to consider the formulated previously task

of this strengthening of control tasis/base, which would make it

possible to exclude p, + from the alternative set as the basis/bass
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on which the error occur cannot. Clear the technical methods of this

strengthening, let us consider the following logical way of the

reliable introduction of surplus basis/base.

Above was examined the representation of numbers in operating

range P and full/total/ccmplete P p+. Let us now present

numbers in operating range P, and as surplus basis/base let us tate

Pn+2>P+ti. In this =ase ful/total/complate range will be number

P =P+2 P. Rowever, numbers in the full/total/complete range P we will

represent by special form, namely, if this number A<P can be

represented in the adopted system from n+2 bases/bases in the form

A -2-(cct, a , ... ,9 an+i, an+2),

then the special machine representation of number & will be the

number

A-a.+2=(Pj, , ..... +,,. 0),

if

2c6+2 < P4,

or

A + p,,"- m%+2 .. 0),

if

In othar words all machine of a number have a digit 0 on surplus

basis/base and the rational operations on machine numbers they must

also give zero on this basis/base. Consequently, it is possible not
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at all to implement on basis/base Pn+z of any operations, but to

always consider that the results have zero on this basis/base. Thus,

on surplus basis/base is achieved/reached complete reliability, since

it directly in the realization of operations does not participate and

true rasult of operation on this basis/base is previously

predetarmined. Th3 expansion of operating range from & to P is

substantially necessary for retaining/preservig/maintaining the

accuracy of the representation of values in the range &, since by the

special representation of a number is built-in the error whose

maximum value

Page 193.

So that the accuracy of representation would not undergo noticeable

decrease, it is necessary to increase the range of the representation

of values, and then their true (without the introduced error) values

viii be in the limits of the preset operating range.

Lot us consider an example of the 3pecial representation of

numbers in the 3ysteM with bases/bases pl2; p3; p3=5; pl7; ps=11.

Its range is equal to P =2*3e5e7e11=2310. Let us introduce surplus

basis/base p6 = 1 3 .

Lot us point out the orthogoval bases of formed in this way
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system
81-15.015; 8z = 20. 020; A93=6006; B --25.740;

B5= 16.380; Bs=6930.

In this case full/total/complete range will be P=30oo3o. it is

necessary to present in the special form number A=1743. Ve find the

digits of the representation of a number according to all bases/bases

A=(1, 0, 3, 0, 5, 1). Here . Instead of A we take A-1=(0, 2. 2,

6, 4, 0), that has digit 0 on basis/base p, and exclude this

basis/base, we will obtain A'=(0, 2. 2, 6, 4).

In conclusion let us note that during the representation of a

number in the special form the form of its alternative set is

retained.

§ 4.7. Distribution of isolated errors according to the intervals of

operating range.

one of the methods of determining the correctness of the number

is the so-called method of nulling, which consists into the

transition from an initial number to the number

Ao 0, ..... 0,Y.)J

with the help of such sequence of conversions with which occurs not

one departure beyond the cperating range of system.
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In other vrds nulling a number consists in the consecutive

subtraction from an initial number of some minimum numbers - the

constants of nuLling such, that number A consistently is converted

into a number of form

.. (0,

then into the number

i ~ ~ ~~ ~~(0 , O , ; ., = , + )

further into a number of form

Page 194.

Continuing this process of n of times, we will obtain

(0, 0, 0, ... 0 0, yn+t).

In this case the constants of nulling must be selected in such a

way that during the subtractions would occur not one departure from

the operating range of system.
4

In other wards, if the intermediate result of nulling takes the

form
(0, 0, .. O , CO.-0, oMi- t) cx(i-t.),

then as the next constant of mulling must be selected small from

possible numbers of the form

(0, 0, ..... 0, Gig- t ....q t,,+),

then during the subtraction is guaranteed the absence of transition

- -A
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through the range.

Thus, as the constants of nulling are chosen such 9 of the

numbers, which are the smallest possible numbers of form:

"'. (ti, 0 tt, .. .. t-+t, 1), ti, I ----1, 2 . ..p, -I

(0, t2,2 . . . tn+., 2), t?, 2 = I, 2, .... p - 1 ;
............................

In this case the total quantity of constants will be defined as

o-n.
* Nulling a numbar, we consocutively/serially pass from it to the

nearest smaller number, multiple pl, then to a number, multiple Pane

and finally we pass to the nearest smallest number, multiple
It

OT = Pi.

In this case should be noted the fact that the result of mulling

does not depend on that, in what sequence (in vhat order) are mulled

the single digits of a number.

Page 195.

Theorem 4.16. If in the regulated system of the bases/bases

Pt, P2, ... , p n, P,+

mulling the number

A = (, -. n . 'z,+),
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then the result of the nulling

.Y= (0. 0 .... , Ynt,)

does not depend on that, in which order were nulled the digits of an

initial number.

Proof. Let us arbitrarily number first n of the bases/bases

Pi, Pz .. Pn

and let us consider the representation of a number in the system

_4 where bases/bases p (i=1,2, ..... n) are arranged in the arbitrary order

Pj., Pj, Pin.

Each of it, .... j. here accepts one of the values of 1, 2 ... , I.

Then, regarding, the constants of nulling on first basis/base

Pit will be the numbers

on the second basis/base

* psi, 2p 1, _1 (ps- 1)pjl;
. . . . . . .• o •. . . . . . ..

on Ia -mu to the basis/base

h-I -I A-t

t=,i 2 pit, "- 'i t

and finally on the latter/last basis/base

-1-- n - i, pj,,. 2 -, "R , .... ,=,H Pi

Since in each stage of nulling it is used only by one of the
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constants of each level, the great nambir C, which can be subtracted

in the process 3f mulling from an initial number, it will be defined

a s C = p 1  ) - p 2  f4 - p , -I 1 i 1
C (p, 1) (pj, 1) P,1 - I

on'
.9C=-P- 1.

Thus, independeat of the order of nulling the great number which is

subtracted from the initial, it is less than the3 value of operating

range.

Hance in thin process of nulling we can swit h over only to one

number, which lies on the left berder of that interval [jJ-P, (U

7 at whi~h it was located the initial number being nulled.

C~rollary 1. The result of nulling determines the number of the

interval, in which there was placed the number being nulled.

Actually/rinally, since as a result we obtain the number, which

lies on the left border of interval lid', (Q 4 1) at which it was

located an initial number, then occurs the equality

AiP = Yn+tMn+i (mnod p,+,)
or

I ,m,+,~a+ (mod p%+i). (4.10)

Corollary 2. If an initial number was corrict, then for it J*O,
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whence follows yn---0(modp.+,), i.e. as & result of nulling a correct

number they must obtain the zerc number

(o, 0, ...,0,0).

Then according to the result of nulling it is possible to judge about

correctness of the number: if y the=O, the number correct; if *.1=0,

the number is incorrect and is arranged/located in interval
lid,, Ui + 1) fl..

Theorem 4.17. (about the errcr distribution). If in the

[ ~regulated system of the bases/bases

SP. P 2 ... PA, Pft+1

is preset the La-orrect number

AX - ii . .. - , t ,+i,. , mn,, m ,),

inaccuracy of which is caused by error Aa, in digit , on basis/base

p,, i~e.

a, = Q, + &A, (inod p,),

and If as a result of nulling of number T we obtain the number

(0,0..... 0, yn+,),

then the number of interval J11, into which falls the incorrect

number A, it is limited by the foraula

Jhere can t(od al-,s - W! or')

where 6 can tak3 values of 0 or 1.
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Page 197.

Proof. The let edge of interval !j ,(+1)- ) is determined from

the relationship/ratio

P_

pnt 1

where k - whole non-negative number.

In accordance with theorem ccndition we occur the equality

T= A+ (0, 0, . 0, Aa,, 0. 0),

where A - is the correct number:

A=(aj, a2, ... , Mi, ..... (X, O"n,,).

In other words addition to the correct number A of the number

(0, 0, . , a., 0)

shifts result from the first interval into the interval with number

J11 or J2, i.e.,

--- (rood , ,) [ ., 1 (mod p,,.,),

whence follows assertion (4.11) of theorem.

Corollary. For the standardized/normalized regulated system

expression (4.11) of theorem.

a= [ 1-, ( m 0odp ,)- 6. 4 _')
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Theorem 4.18. (about the errer distribution).

Page 198.

If in the regulated system of the bases/bases

Pi42 PP~

is preset the iacorrgct number

inaccuracy cf which is caused by error .Aaj in dijit a, on basis/base

Pi, i.e.

a,-a, -'Aa, (mod pi),

Aav 1, .2 . ,-1

where a, - digit on basis/base pi of the correct number

and if the result of nulling the number

(0, 0... 0, Aai,0...0. 0)

takes the form

(0, 0,., 0, *Yn+i),

then the value of error Aa, is determined by the equality

-%, 01-1-7'-i (Mod Pn+0 t)i(mod pi), (4.13)

where c, and c,., are the digits of the number
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Proof. Sinzs the result of nulling does not depend on the order

of nulling, thea, carrying out the process indicated on numbers A and

A through the digits of the bases/bases

PI, P2, 9 Pi-t' Pi+t, ... I PM'

we wiii obtain the numbers

(O'. , .. ., 0, 5j, 0, .. ,0, P.+I) (4.14)

a nd

(0, 0, . ,0, pi, 0, .. v. 0, Pnj (4.15)

respectively.

The completion of the process of ntiiling must be produced by the

constants of the form

2f Y
p7 pi p

Let us select pair X, and X of such whole non-negative numbers

that would be satisfied tbe condition

kjci = j (mod pl), (4.16)
kii= Pt (mod pt). (4.17)

Page 199.

Multiplyin; Xand X, on Piand subtracting respectively from

(4.114) and (4.15) we will obtain

P'-knt = n~ (mod p,..1).

P.+,kC,+I =0 (mod pn-,
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whence

XT- xi = Pni~i -'nfli (mod p, 1 ,(4.18)
Cn...

where the division it is understood as formal division on

modulus/module P,.i*

From (4.16) and~ (4.17) we will obtain

(XI -ki) c = (i - P) (mo pi)

On the strength of the fact that expressions (4.114) and (4.15) are

obtained as a result of identical process, we have

i.e.

Q-))c 1 : Aa1 (mod pi)

whence and follows the assertion cf theorem.

Since each of the errors can translate a correct number into the

number, which lies only at one of two intervals

[j~qP, (1 + 1) V), 1(j1+ 1) 91, (j -;-2) J),

then, knowing tie number of interval, whxere hit an incorrect number,

can be defined as the set of bases/bases, in the digits On Which

could take place the error, so also possible value of error, which

translates correct number into this interval.

in connection with this are opened further possibilities to the

reduction of the process of positicn finding of error, namely:



DOC =81023910 P AG E jO

-since the error in the digits from bases/bases Pg, Pa. eee,

p, can be available only ia intervals determined by theorem 4.17.

then in the cas% when occurs the error, which relates not to one and

possible intervals, it is possible to claim that it occurred in the

digit on control basa;

-since the rum of the information about the possible location

of error we possess the informaticn also about the value of the

predicted error, then this further information in a number of cases

S will make it possible to more rapidly determine true value and

location of error;

-in the case when the alternative set of bases/bases subtends

to one basis/base, to us is immediately known the value to which

should be corrected the digit on this basis/basa.

Page 200.

Let us consider the distribution of iacorrect numbers according

to the intervals of numerical range for the concrete/specific/actual

system of bases/bases pIL=2; P2= 3 ; P-35; p,=7; ps=1l. Let us give the

values of minimum numbers of nulling in this system

(1, 1, 1, 1, 1) (0, 0, 2, 5, 1) - (0, 0,0, 2, 8)
(0, 1, 4, 4, 4) (0, 0, 3, 4, 7) (0, 0, 0, 3, 7)
(0, 2,2, 2,2) (0, 0, 4,3, 2) (0, 0, 0,4, 5)
(0, 0, 1, 6,6) (0, 0,0, 1,10) (0,0, 0, 5, 4)

(0, 0, 0,6, 2)
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]At US cons~ider the distributicn of incorrect numbers according

to the intervals of numqrical range depending on the value of error.

Basis/bass pl=2.

For a number with the error Aa,=1

y~ -](mod 11)+6S=5+6,

i.e. the error translates numerical into the sixth or seventh

interval.

Basis/base p2=3 .

* For error &(lZ=1

= [2.""] (Mod II) +67'5 8.

A number will pass into the eighth or ninth intervals.

Error Aa2=2 givas

4 (mod 11) +'=3+6

and will translate a number into the fourth or fifth intervals.
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Basis/base p3=5.

For the error ha3=1 we will obtain

[311 (mod 1)+6=6+6.

with the error &aj=2 ye will cbtain

2.1.1 (mod 11)+6-2+a.

Page 201.

4. with ha3=3 we wiil obtain
r,3.3.I11 n

With Aa 3 =4 we wiill have

4 3L 1 (mod 11) 1-6=4 8

Basis/base p,=7.

A number with the error Aci,=1 will give

*Error &a4=2 translates a number into the interval, determined

Y 2 1 (mod 11) 6 =3 6

fta4=3 is translitei a number into the interval, which corresponds

Y5 [!*"] (mod 11)+ 6 = 4+ 6

With ha4=L4 we wili obtain

Y5 ~ (mod 11) 6 =6  .

With Aa4-5 we will have

Y 5 . (od1) 7 8
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Error &a4=6 will translate a number into the interval, determined

V[67.1] (mod 11) +5 = 9 6.

The obtained results make it possible to construct the table, in

which to values Is are compared pcssible errors Aai. It is doubtlass so

* that to each value Is can correspcnd error, also, on the control

basis/base. After designating it through A4. we will have as the

possible error a value Ah=Y3 (see tables on page 202).

Example. Let be is preset the incorrect number 'A=(1, 1, 4~, 1,

1) , to which in resolving task is adjoined the correct number 3=(0,

2, 0, 4, 2) . Let us try to determine location and value of error in

number 1.

Let us leal nulling number A

(1 .4, 1,1) (0,0.3.,0, 0) (0, 0. 0, 3, 4.
1(. , 1, 1) -(0, 0.3. 4. 7) -0. 0. 0, 3. 7

(0,0,3,0,0) (0, 0,0, 3,4) (0, U, 0,0. e

Page 202.

Since Ts=8e then from the given table let us determine the

following alternative set:

- or occurs the error Aa2=1 in the digit on basis/bass p2;

- or occurs the error ha3=3 in the digit on basis/bass p3;
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-or occurs the error hae,5 in the digit on basis/bass p.:

or occurs error Ak=8 in the digit on the control basis/bass.

L~t us fulfill the operation of adding of nuubar Awith number B

--8(1, 1, 4, 1, 1) +(0, 2, 0, 4, 2)-=(1. 0, 4, 5,3).
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'rotable of error distribution.

UIaqemue Y5 B03YAOMMUO OIZZM6KM

0 (3)4.C.1o npaaHjyhHoe, OLLIM60K HeT

2 AM3 =2, Am 1 -A

4 Ac, =2 A3 -4. Ax 4 = 2, Am, -3, AA-4

5 Aal=I Aa 3 4, Aa, 3, ilk 5

6 Aat = 1, Aa 3= 1, m4 =4, Ah=6

7 Am2Z=11 1131 Aa=4 %(4=5, At=7

8 Agz2=1, Aa 3 =3, Aa4=5, Ak=8

9 A 3 3, A5a 4 =6, Ak= 9

10 Am, 6, A = 10

Ky (1) Value. (2) . Possible errors. (3). Number correct, there are

no errors.

Page 203.

gulling the obtained sum
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(1,0, 4, 5, 3) (0, 2, 3, 4, 2)
-(1, 1, I, , I ) -(0. 2, 2. 2. 2)

(0. 2. 3, 4, 2) (0, 0, 1, 2, 0)

(0,0, 1, 2, 0) (0, 0, 0, 3, 5)
-(0, 0, 1, 6.6) -(0, 0. 0, 3, 7)

(0, 0.0, 3, 5) (0, 0, 0, 0, 9)

For the sum obtained ys=9 and in accordance with the table of

error listribution let us determine the possible alternative set:

- either ozzurs error Aa3=3 on basis/base P3 ,

- or occurs error A*,=6 on basis/base p.,-

- or occurs error Ah=9 cn the control basis/base.

since neithir value nor location of error could be changed, then

it is possible to claim that cccurs the error 3=z=3 on basis/base P3.

Hence unknivn corrected nusber A can be represented as

A =X-(0, 0, 3, 0, 0) =(1, 1, 1, 1, 1).

The exanp13 examined demonstrates the fact that an increase in

the informativeness of alternative set allowed for one step/pitch not

only to determine the location of error, but also to indicate its

value.
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It should be noted that the error distribution according to the

intervals of numerical range as the rate of convergence of the

alternative set of errors, depends on the value of control

basis/base, i.e., from that occurring for redundancy.

Theorem 4.19 (maximum). If in the standardized/normalized

regulated systsm occurs the relationship/ratio

pit+ > 2pnp,-,, (4.20)

-4 Then the number of interval [i&, (j+ 1)0), into which falls the

number, which contains error on one of the working bases/bases, are

uniquely determined location and value of error.

Proof. On the basis of theorem 4.17 about the error distribution

the number of interval J+1, where falls number A in the presence of

error Aau it is defined as

j= [aimp.,+ ] (mod p,,+,) -T- 6,
Pi

i.e. a number it falls either into the interval with the number
SACLIMP""1 ] (Mnod p,,,).

P1

or

[A('mPnt] (mod Pn+,) + I.
Pi

Page 204.

The condition of the fact that into the intervals with such numbers

cannot hit an incorrect number, as a result of the appearance of an
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error an any of the working bases/bases pi it wili be

PI ]- P, i (mod p.+&)> 2

or, after amplifying inequality.

L' A~i~P 2pj - j ] (mod p.+,) > 2,

whence

P Aa~rn~pj-Aajmjp1 j ](modp,+1) >2. (4.21)

Val 1ue

I Sa mipj - AampiI= 0

is positive inta3ggr number. Hence with

Pnm i> 
2PnP#%tl

is satisfied tha condition (4,21)that also is claimed in the theorem.

Lint us consider the operation of theorem in the

concrete/specific/actual system of the bases/bases

PI-3; P2= 5 ; P3 =7.

Let as select the control basis/base p,=712p2p3
:n th!3 canc the do3:!nr, a.r'.e -w=105, an~d th c ete rar.n-e

B = 2485, m, =1, 82 =1491, 12B3 = 831065,
m3 =1, B4=2415, M&m23.

Let us write out minimum numbers of nulling:

on basis/base p1= 3

(2. 2,2, 2)

on basis/base P2=5

(0. 1,6, 6)
(0, 2, 5,12)
(0, 3, 3,3)
(0, 4,2, 9)
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on basis/bass p,=7

(0, A. I, 15)
(0, 0, 2. 30)
(0, 0, 3. 45)
(0, 0, 4, 60)
(0, 0, 5, 4)

(0, 0, 6, 19)

Page 205.

Lqt us consider error distribution according to the intervals of

basis/base p,=3 .

Error Am,-l. Let us null number (1, 0, 0, 0)

(1, 0, 0, 0) (0, L, 6. 70) 0,. u. 1, 61)
- (1, 1, 1, 1) - (0, 4, 2. 9) -0, 0, 4, 60)

(0, 4, 6, 70) (0, 0, 4, 61) (0. 0, 0. 1)

Since 1,=1, then the number of interval N viil be defined as

N=1.23 (mod 71)+1=24.

Error Aa,=2. Let us null number (2, 0, 0, 0)

(2, 0, 0, 0) (0, 3, 5, 69) (0, 0, 2, 66)
-(2,2,2, 2) -(0. 3, 3, 3) -(0, 0. 2, 30)

(0, 3, 5, 69) (0, 0, 2, 66) (0, 0, 0. 36)

Hence 11=36-23 (mod 71)+1=48.
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On basis/base pzS Aa~pzl. Let us null (0, 1, 0, 0)
(0, 1, 0, 0) WO. 0, 1. 65)

-(0. 1.6, 6) - (0. 0. 1. 15)
(0.0, 1.65) (0. 0,0. 50)

Here 1=50.23 (mod 71)#1=15.

Az2=2. Err~nsous number (0, 2, 0, 0)

(0. 2, 0,0) o K2. 191
(0, 2. 5. 12) -i .2. --01
(0. 0, 2,59) v. . .29)

Whence N-29*23 (mod 71) +1=29.

Az 2 =3. Let us null number (0, 3, 0, 0)

(0,30,01(0,0.4. 68)
-(0,3,3.3) 0. G. 4. tk'

(0,0.4,68) ~ .UU

Then 1=8.23 (mol 71).1=143.

Am2=4. Let us null number (0. 14, 0, 0)

-(0.4.2,9) -(0,S.4)

(0, 0,5. 62) (0. 0, 0, 58)

Whence X-58*23 (uol 71)+l1=57.

Page 206.

on basis/base p3=7
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ha=zl. Let us null number (O 0, 1, O

(0.0. 1.0)
-(0. 0, 1, I15)

(0. 0, . 56)

Then 4=56o23 (id 7 1) + 1= 11.

&z=2. Number (0, 0, 2, 0)

(0. 0, 2. 0

--)0, 1. 2. 30)

lhpn:e N=L1,23 (ao 71)+1=21.

dz3=3. Let us null (0, 0, 3, 01,

45)

Wha n:. 4= 26*23 (ali 7 1) + 1=31.

ftzj4. Let us null number (0, 0, 4, 0)

(0. 0. 4. o
-O 0.4.60)

(0, 0, 0. 11)

r he nI= 1 1 *2 (moO 1 7 1) o.I = 41.

Az=5. Number (0, J, 5, 0)

(u. ). 5. 0)
-(0. 0. 5. 4)

0, o, 0, 67)
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Whence N=67923 (mod 71) .1=51.

Aar 3 =6. Erroneous number (0, 0, 6, 0)

(0. 0,6. 0)
-(0,0.6.,19)

(0l, 0, 0, 52)

Whence N=52*23 (aod 71) *1=61.

Thus, an example illustrates the astab lishei /installed by limt

theorem error iistribution according to the intervals of numerical

rang.

§ 11.8. Arithmetic of errors.

Let as consider some methods of aczelerating the contraction of

the alternative set of errors with the axecution of arithmetic

operations.

Theorem L.20. (a~bout addition and subtraction of errors). if in

the regulated system of bases/bases was implemented the correct

operation of allition or subtraction whose result was

arranged/locatel in interval yx as a result of the appearance of

isolated error In one of the operands, then from the alternative set
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of errors must be excluded the terms, which dc not satisfy the

relationshi p/ratio

Iyz - YX I <, (4.22)

where yX - number of the interval in which was arranged/located

incorrect operand.

Page 207.

* Proof. By an incorrect number of stood operand A. with the

addition (subtraction) to it the correct number a neither value nor

location of error be changed can, i.e., the same error occurs also as

a result of operation.

Since the number of the interval im which is located the result,

is determined by the value of errcr, and the value of a number itself

can move it only into the adjacent interval according to theorem 4. 17

about the error distribution, then hence and follows the assertion of

theorem.

Theorem 4.21. (About the multiplication of errors). Let in the

regulated system of bases/bases be implemented the correct operation

of multiplicatin above operands A and 9 whose result C was

arranged/located in interval Vc, as a result of the appearance 3f

isolated error in one of the operands.
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Then from the alternative set cf errors must be excluded the

terms, which do not satisfy the equality

AaA~ (mnod pi) = Act, (4.23)

wherg Acz - possible error in the digit on basis/base Pi of incorrect

operand; ~,-digit on the same basis/base in the. correct operand:

Act- possible error in the digit of result on the same basis/base.

Proof. For the operation of multiplication we have

a~pi(modpj) ci.(4.24)

Let us assume that in operand A on basis/base P, occurs the

error by val ue Aai, and in the prod uct - b y val us Act. Then (4. 24) it can

be rewritten in the form

qoj -aj - A j)P (mod pi) = (c, - Ac,) -'Act . (4.25)

But if occurs error Ai, thq true value a(" of the digit of operand A on

basis/base pi they are

a/H) = -

but the true value of the digit of result c(,H):

T. e. ctjf)P mod pl) =c~i'. (4.26)

Page 208.
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From (4.25) and (4.26) we obtain (4.23).

Theoreim 4.22 (About the step-by-step division of errors). Let in

the regulated system of bases/bases be implemented the correct

operation of the step-by-step division above operands 'A and B whose

result C as a result of the appearance of isolated error in operani A

be-came an incorrect number.

Then from the alternative set of errors must be excluded the

terms, for which is not ifplemented the equality

7, (mod pj) = c,(4.27).

if A - dividenJI, or are exclujded the terms for which does not occur

the equality

(Aaic(HM) + Aca) + Aa1j~cj) (mod pi) = 0, (4.28)

if the incorrect operand A is dividqr/d.3nominator.

Proof. Sia:,4 is produced the operation of step-by-step division,

then takes the place

~(mod p,) = c

or

c4 + ip, hci,(4.29)

whers k, - whola non-negaitive number.

if error Da basis/base p, occurs, then by the true digit of
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operand A on basis/base Pi it will be

(m = at- A

but ths true digit of the result

cm)= ci - Act,

whence

czm + k2pj = Pcl (4.30)

where k 2 -whcl3 ;on-negative number. From (4.29) and (4.30) we will

obtain

tia1 + kapi §= At

where k 3 =k,-k 2 .

Page 209.

Hance
-T-- (mod pi) Act

that also proves assertion (4.27) of theorRem.

in the case, when the incorrect opqrand A is

divider/denominator, the execution of step-by-step division can be

regista red as

Pi+kjj am + .Aa') (c(,") + Ac), (4.31)

where k4 - whole non-negative number.

But true aperation must be ispleuented above the correct digits
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on basis/base Pi, i.e. must occur the relationship/ratio

, 4- k ap ' = ,)"), (4.32)

vhers ks - whol3 non-negative number.

From (.31) and (4.32) we cbtain

a~x)Ac, + +(,)a axzjAcj = (k, k2) Pi.

whence ensues assertion (4.28) of theorem.

4'

Let us consider the operation of theorems 4. 21, 4. 22 in the

standardized/normalized system cf the bases/bases

Pt1 2;, P2-3; p3= 5 ; P4= 7 ; p5=i.

Example. Is preset the incorrect number &-(1, 1, 3, 1, 2), to

which in resolving task correctly is multiplied the correct number

B=(I, 0, 0, 1, 1). It is necessary to determine location and value of

error,

mulling the number A

(1, 1, 3, 1, 2) (0, 0, 2, 0, 1)

-(1, 1, 1, 1, 1) -(0, 0. 2. 5, 1)

(0, 0, 2, 0, 1) (0, 0, 0, 2, 0)

(0, 0, 0, 2, 0)
-(0. 0, 0, 2. 8)

(0, 0, 0. 0, 3)

They obtained 7s=3.

Let us null product AB:

L k A = . - ,...... . . . .. .. ....... = ., , ... .. .. ,.=
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AB =(1, 1, 3, 1, 2) x< (1, 0. 0, 1, 4)= .1. U, 1, 8)

2 0, 0, 1, 8) (CF. 2, 1., 0. , 0 0. 2. 3

i, , i n (0, 2. 2. 2. 2: -t0, (). 2. 5.

(0, 2, 4,0, 7) (0, 0, 2,5. 5) (0, 0.0, 0. 4)

Here is=110

Page 210.

From the table of error distribution let us write ou~t the

conditional alternative set (F2, F31 P41 PS).

It is checked now fulfilling of reguiring (4.23)the theorsm

about the multiplication cf errcrs-.

Basis/base pz. We have aa 2 =2, pz=0, &-2 =2, i.e., 2 *0 J2.

Condition (4.23) is not satisfied, the error Aa2=2 in operand A is

impossible.

Basis/bass p3. We have Aa3-, 03=0, Ac3=4. Here 2o0#f1. i.e..

error haj=2 is Impossible and must be excluded from the alternative

set.

Basis/base p4.

a) A~2,0 4 = 1, c,= 2. *Here 2.1=2. T2he condition (4.23)
is satisfied, error -%cj= is possible.

a) &.%-22# 0421 Ac4 =3, the condition of theorem 291J3 is mot
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satisfied. A similar error is impossible.

For control of base Ai,=3, Ai=4. Ac=4. but (3.o4) (mod 11) 3b4. Error on

the zontrol basis/base is impossitle.

Thus, error is located in the digit through basis/base p, and

its value Aa,=2.

Example. To determine the alternative set of errors with the

execution of the correct operation of divilIing the number &=(O, 2. ,

* 2, 5) into the correct number B=(1, 2, 2, 3, 6).

Let as determine the alternative set of the errors for number A,

for which let as lead nulling.

(0, 2. 4,2,5) (0, 0,2,0,3) (0, 0, 0, 2,2)
(0, 2. 2, 2, 2) - (0, 0, 2. 5, 1) -(0, 0, 0, 2, 8)
(0, 0,2 ,0, 3) (0, 0,0,2,2) (0, 0, 0,0, 5)

By value ys=S from the table we determine the alternative set of

errors (ps;, p1j; po; p!,)# moreover are possible the following values

of errors:

Aal=I, Acg 3 =4, Aa4=3, =.

Let us fulfill the operation of the step-by-step livision A into

B:N':B=x(0. 2, 4, 2, 5): (1, 2, 2, 3, 6)=(0. 1, 2, 3, 10).

Lat us null the quotient
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(0,1 12,3,10) (0, 0, 3,6,6)
-(0. 1,4,4,4) -(0, 0, 3,4,7)

(n, A, 3,R A 6) inA, 0, 0,2, 10)
(0, 0, 0, 2, 10)

-(0, 0, 0,2,8)
(0, 0, 0, 0,2)

By value ys=2 we determine for the quotient the alternative set

of errors (P3; P.; PS)*

In this case conditicnal alternative set will be

(P;P;N 5)(3,L 5) (S ;P)

We analyze the obtained set.

Page 211.

Basis/base p3. hai,=4, 032 AC3 =2. Condition (4.27) 4/2=2 is

satisfied, and in the digit on basis/base P3 is possible error.

Basis/base p*. hab=3, 04=3, Ac,=l. Here 3/5=1. Condition (4.27)

is satisfied qmid. and in digit on basis/base p. is possible error.

Control basis/base. Amg=5, 03=6, aas=2. According to the

condition of the theorem
(md1)=50*2

i.e. control bsis/base must be excludedi from the conditional
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alternative set. Conditional alternative set will take in this case

form (P3. P.).

Knowledge of location and the value of possible error permits

for us to suffi-iantly efficiently reduce the value of the

conditional alternative set of the errors and in the majority of the

cases to immediately correct place error.

4

§ L.9. The statistical simulation of the process of the convergence

of alternative zorrection.

4he simulation of the retraction of alternative sets was

produced to to block diagram on page 212.

As the basis of the system of numeration were selected the

following:
p1=2, p:=3, p3= 5 , p4=7, p5=ll,

ps= 13, p7=2 9 , po= 31, po=37, pln=41.

Ia numbers both initial and for the intermediate operations they

were chosen ranlonly from operating range 1O, p- - so that the results

of operation, entering the circuit, would not exceed the limits of

the same range. Furthermore, in the pro;ram of the circuit of

operations participated the operations, which substantially vary

value and character of a number. It is completely logical that such

operations, as addition +1, little varying value numbers, do not
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affect the character of the alternative set of a number and thsreby

do not obtain n3w information for position finding errors. Therefore

poorly informative operations were not built-in into the program of

circuit.

Ware tracal two models of the short duration failures:

1. Always goas out of order one and the same basis/base (and so

on each of the bases/bases).
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Page 212.

( 8b~jop ucxodwozo vCIJ~ A

j'1BbIoD N~omp~oo ocyo6amuA

Cc ucxaxemmoig uutvoao;

'.1 deue ucxaxe-Hozo
uC170 A

H azo~waemue alpcmeAmaI770-GcL
caokqfl'1ocmud A

(J ') HaxowdeMuL' 1epcewemuA

A6e Na7u3I ogom yDamO" 7C

8b M6o UAdy.w~'o a odcvem camoxopPfeu~uu

66160p Ch7edqI'O~ee vdaca, (2 Am&A'U3 opromva NUA
yvactnevwezo doeall npooiecca :Yema

8bdno7A~eMUe c,7edyoWCoui /e.amhpe3glib~a ma
det;CMOUA e

Kay: (1). Selactioa of the initial number h. (2). Selection of number

of basis/bass with distorted digit. (3). Obtaining distorted number

A. (4). Determiunation of alternative set A. (5). Determination 3f
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intersection of alternative sets. (6) . Analysis of end of retraction.

(7) . No. (8). Yes. (9). Selection of following operation. (10).

Construction of histograms and calculation of self correction. (11).

Selection of following number, which participates in operation. (12).

Analysis of eni of process of calculation. (13). Execution of

following operation. (14) . Printing result. (15). Sending of result

for place of initial number. (16). Stop.

Page 213.

2. Bases/bases go out of order ranlomly according to preset law

of distribution.

For each model of short duraticn failures was counted the lengta

of chain of operations, necessary for the localization of the place

of short duration failure. Results were obtained in the form of the

histograms of the frequencies of the convergence for the fixed values

of lengths of chain. On the basis of these histograms were

constructed the graph/diagrams of the dependences of probabilities it

was discovered and the correcticn of the error on operation number in

the circuit, and also on the length of chain with the short durttion

failures in different bases/bases. Besides this was conducted the

calculation of medium chain lengths and was constructed the

graph/liagram of the dependence of medium chain length on the value
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of basis/base, digit on which was erroneous.

Findings male it possible to also construct the dependences of

the probabilities of localization of the place of the error as

function of the length of chain of operitions for different values 3f

bases/bases.

The analysis of the results of the simulation conducted shows

that the retraztion of alternative sets always descends and gives the

single-valued datecmination of the unknown basis/base. However, the

build-up/growth of the probability of convergenze strongly depends on

the value of basis/base, on which occurced the error. Similar pattern

occurs also for the probability of self correction, treated as !

special case of the convergence of alternative sets.

If for small bases/bases (2 3, 5, 7) bulk of alternative sets

during the calculation of circuit descends on the second or thrird

operation of circuit, moreover maximum falls to the first operation,

i.e., immediately for the self correction, then for more senior

bases/bases (29, 31, 37, 41) occurs the shift/shear of maximum value

for third operation and sharp decrease of oossible self corrections.

This, in particular, it is explained by the decrease of the

probability of obtaining zero with the distorted basis/base and the

more even distribution of thesp zeros all over the aggregate of the
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results of the operations of circuit. AnalogousLy the probability of

localization of th3 place of error with an increase in the length of

chain more rapidly approaches I fcr small bases/bases. If for

basis/base p 2 the probability cf localization of error for two

operations is aqual to 0.73, then for p. 41 it is reduced to 3.28

i.e. almost three times. Yes even very :haracter of dependence shows

that until the values of bases/bases ara changed comparatively

smoothly (2, 3, 5, 7) that and curved sufficiently steady, and with a

sharp increase in the value of tasis/base from 13 to 29 and further

to 41 curves it sharply falls dcwnward.

Page 214.

With an inzrease in the length of zhain the probability of

localization of the place of error increasingly less depends on the

value of basis/base and approzimately/ezemplarily at the length of

chain in 11-12 operations probabilities are equalized to the value,

equal to one.

That presented makes it possible to draw the conclusion that the

method of the contraction of the alternative aggregates of the

results of calzulating the consecutive operations of circuit makes it

possible to localize the place cf the error at the mauimum length 3f

chain into 12 operations. However, average length of chain composes



DOC : 81023910 PAGE

4-5 operations.

The retraction of alternative sets can be somewhat accelerated,

on the basis of the follcwing considerations. in view of the fact

that medium chain length increases with the value of bases/bases, it

is expedient to increase the reliability of operation in the l].rge

bases/bases by one or the other technical means, at least even due to

the decrease of the reliability of small bases/bases. In this case

the short duration failures will cccur predominantly on small

bases/bases and, consequently will be accelerated the contraction of

alternative to the place cf errcr. In accordance with what has been

said were simulated the retractions with the equiprobable short

duration failures and independent of the value of bases/bases with

the more probable short duration failures for small bases/bases. The

result3 of simulation show the noticeable acceleration of contraction

in the second cise. Medium chain length is here equal to three

operations.

Further was simulated the method of localization of the place of

error on the hypothesis accepted, namely on any of the bases/bases,

entering the alternative set of an incorrect number, is done

correction and on the obtained correct number are implemented further

operations of circuit. It is assumed that the incorrectly corrected

number must not lead to the true results in the operations of
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circuit.

Simulation was produced on the block diagram, represented on

page 215.

It was coniucted under the same conditions as the simulation of

the retraction of alternative sets.

The analysis of obtained results shows that also by the method

of hypotheses is reached satisfactory localization of the place of

error, moreover in contrast to the method of the contraction of

alternative sets the probability cf localization of the place of

error barely depends on the value of basis/base, according to which

occurred the short duration failure.

Page 215.

A change in the value of this probability with an increase in the

basis/base is so insignificant that virtually is not had an effect on

the average/mean value of the length of chain, necessary for the

localization of error, which in thb method of hypotheses composes two

operations for the short duration failure on any of the bases/bases.

As far as length of chain is concerned maximum, then it in the method

of hypotheses is 9qual to six operations.
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gbifo npoea cpea~up
HemaeN04 UwV,6 U~~au OOqft n cvem

/~~~emv aaemoeo~a /,' Yh U C7UNA

Key: (I. Selecion of he inial ndeumbrA 2.Sleto fnme
of basis/base of distorted dgit andX1?WM obAinn itre ubr

(3) . Determination of jo alerni se . I) elcio f yotei
of error ad operatio ofea~u couctingf coectcmq5.Seetino

folloving number accordnoo eprweogrcao icit(6.Eetono
following operition of~~ circuiat (7.Anlss foband eulto

correctness and correciowe of lenatv e se.(.Aayiso n
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of ratraction. (9). No. (10). Analysis of termination of calculation.

(11). Concluding printing and stop.

Page 216.

Thus, it is possible to draw the conclusion that the method of

*, hypotheses accelerates the process cf localization of the error both

on the average and on the maximum, approxiaately/exemplaLrily doubly

in comparison with the method of the contraction of alternative sets.

Thus, with the fulfillment of three operations the probability of

localization of tha error in the method of contraction composes 0.62,

and in the method of hypotheses this probability is equal to 0.965.

However, with the noted advantages tha method of hypotheses is

more complicated on its realizaticn both in the equipment sense and

algorithmically in comparison with the method of the contraction of

alternative sets. While the latter does not interrupt/break the

natural course of the process of calculations according to the

program, but sa3mingly in parallel are monitored it, the method of

hypotheses can in a number of cases require the discontinuity of

process and its return at the beginning of the reception of

hypothesis. Therefore it is considered by advisable to use the

combined process.
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Im particular, it is possible the large foundations for checking

by the method of hypotheses and to exclude them from the alternative

set, and for the remaining part of the alternative set to use the

method of contraction.

The combined method also was simulated and were the findings,

which characterize the parameters cf the process of localization of

the place of the error in the dependence on the relationship/ratio of

the parts of the alternative set, processed by different methods. The

analysis of these data clearly shcws that the use/application of the

combined method is very efficient. A quantity of excluded bases/bases

is different during different capacities of alternative sets and

different distribution them small and large bases/bases. Optimum is

located near 0. from a quantity of bases/bases, entering the

alternative set. In this case the medium chain length, necessary for

the localization of error, will ccmpose two operations, and the

probability of localization of the error with six operations in the

circuit is equal to 0.975.



DOC 8 1023911 P AGE 35

Page 217.

Chapter 5.

ALGORITHMS OF THiE EXECtJTICN NCNM'ODUIAR OPEERATIO'S.

Does not cause doulbt the c-fficiency of the use/application Of a

system cf =esidual classes in the i-2plementation of the majority cf

arithmetic operations.

Somewhat more complicate-dly Frcceeds matter with the qxcecutir

of nonmodular (?ositioral) operaticns, which rejuire ths krowledgB Of

the value of ent-,irq number as a wbclce.

Thus, duriag the determination of the sign of a number, Wit& ho

fulfillment of ths% arithmetic ccmfarison cf tbo numbers, in caertlia

cases of division, with the rcurding we should have information lbo)ut

the value of entire number or, which is the same thing, it is5

necessary to know the lccaticr cf a numoer in the numerical n-.
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In this case, as a rule, tc us it suffices to know ths nu'i r zf

interval j, ir which is iccated a number.

For the ir.trcducticn of the sign of a number entire numcrica!

range w*e divide/mark cff intc twc Earts and on that, in which of

parts it lies/rests the number in question, we judge its sino. ii.ra

knowing thae number of interval [iPin which isPn , P n whchi

arrangod/located a number, we knc% its sign.

Be-ing congruqnt/egquating with zesp-ct to the value two nlmr':s,

* " we judge that, which of the numbers mcre cn the sign of differr'.ce.

The knowledge of the numbers of the intervals in which are

arranged/locatea the operands, raX.s it possible to simplify th =

process ot comparison, namsly: if numbers lie/rsst at the diffe: n:

intervals, then cf them large is the number, which lies at the

interval with the large number and, etc.

Page 213.

Until r.ow, th.y used in the examination of nonmodular cp-eraticns

by some values, which characterize entire numter as a whole: rar.,

and it is later by trace, by character.
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In prisent chapter it is proposed t4o consi ler some alqcri:ams c

the detprmination of, minifum trace or character of a number, ani also

the number interval, in which is arranged/locat-3d a number, fcr the

purposze of the 3fficient realization of nonmodular operations.

1§5.1. Ithcd of wpight charactieristics.

Lit us introduco the concpct of thq weight of a minimum

pseudo-orthogonal number.

Definition. By the weight cf the minimum pseudo-orthcgonal

number

we will understand correct binary fraction with a length of 1:

1~- + S(22' + + e121

where

j 3-1 H (I
0, ecaui (2 at 2'a) flpBHJbH8I? rapa,

tu~t1, B flPOTHSHOM cAyqae

Key: (1). if. (2). correct pair . (3). otherwise.

with j=1, 2, 1. .

The connection of the value of a minimum pseudo-orthogonil

number wi.th its weight iss determined by thq following thcacr~m.
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Theorem 5.1. If in the stardardized/normalized system cf "hs

bases/bases

.. Pt, P2 . .. Pn

is preset the minimum pseudo-crthcgcnal number

, .W~~All = (0, 0, .... i . ..

with a weight of M,, with a length of 1

1~ (0- + (2)2-1 + +4V.. MaLi = z E• . .I

then value M,,, is connected with its weight with the following

relationship/ratio:

< (51)

Page 219.

Proof. According to the determination of the weight cf a intu-,

if e /=i, pair (ai,ai) is incorrect, i.e., during the additicn of

initial minimum pseudo-crthogcnal number ,, of very with itself w-_

will obtain

e ithe r

M~i > 2-' ,

and if eL')=O tar, pair (a,,a) is correct, whence

0!2M,<
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or

M.a < 2-1
P.

Joining these inequalities, we car write

Pn Pn -

It is logical that a similar inequality can be written for arv

eat2-*1. M2 -iai < E 2c 2-  (5.2)
PnP Prn

L5 t us use further the Iethcd f inducticn. Let us assumst than

4 (5.1) it is ccrzect for 1=j-1. Let us show that it is correct then

for l=j. L.t taKe place
M-t Mai <. M- ,p -, P-.- n_3

Lot us first of all note that
Mj- ''M, - [21-1M=, -'Qj f!P 2-M -[2 -  -- Pnj

But on thm basis (5. 3) we can write

-!_-., ] 2j j- I
.*/Pn .jPn~- ~ P!

whence

Ms/-,=, -- -1mal - , (5.4)

Page 220.

Then inequality (5.2) can be rewritten in the form

21 2-' + 2'-'mIT' - < 2P-'V.t , < el -.
Pr i Pn Pn

or PlPr!
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m p. a±2 a L

Pn-P Pn Pn

However, since

that

Jrr
• ~~~Mai - ' < M~I 9--- - .
"n nn, pa

that also prcves asserticn (5. 1) cf theorem.

* Corollary 1. If for this basis/base pi it will be fcund integer

Th, satisfying the comparison

2 1 (modpi),

then occurs the followirg equality

(2" - ) M,,, = k f , (5.5)Pn

where k - integer.

Subsequently value -T we will call the length of weight m,.,

Actually/really, assuming/setting in (5.4) j-Iai, we will obtain

M . . 2 RIM, - 2 m , -,(5.6)

or, taking into account that, regarding a, has the place

M 2 i X = MI.

we can ragister (5.6) in the form

(2" - 1) M,, ¢, 2 --'' (5.7)

which coincides with (5.5) with

k 2'm.
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Corollary 2. From (5.7) ensues/rescapes/flows out in this casz

reDr-4s-antatien M% in. tho form

Ti. r2 1m

M i = (5.8)

Let to us be is preset number A=(a,,a:.

•4,

W - form sum . 4 . of the ir.ium pseudo-orthogonal numbers

0(, 0. . . S,).

M _. =( . .... ,_,, S.,).

each of which has a weiot ma (i=l, 2, ... , n-1), i.e.,

n-I

MA = (aj,, .. 1, SA) = -" M . 91

Let us assume that the least ccmmon multiple v of values

311 n2 ...... n-t is such, that is satisfied the condition

2' = I mod i),(5.10)
i= ], 2 .... n- ,

then, passing for each of the selected minimum pseudo-orthoaon-a

numbsrs to the weight by length w, we obtain in accordance with (5. )

2 I '

2n-I P'n
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after which th= 4xpressicn cf signs the form

n-i

•L" M" ub_ f egh• i2'-I1 Pn-

Determination. By weight m of number A of length

call th- sum of weights the lenqt v of the minimum pseudc-crtIo-or i.

numnb.rs where valu. ir satisfies (5. 10), the ccmponen-ts this n lzier A,

4

Page 222.

Then expression (5. 11) can be registered in the form

MA - A (5.12)2R 1 P-

Let us formulate the tollowirg theorem.

Theorem 5.2. (about the minimum trace of a number). Ir in -hi

standardized/normalized system cf bases/bases is preset the number

A = (at,, M.... )

with a weight of mn by length v, not multiple to value 2'-l, ar

by tra:: S., th~n the minimum trace cf the preset number is

determinel by the equality

SI =(S.A -L2"- )(modp.). (5.13)

Proof. In iccordarce with (5.12) and thecram conditions w= havj
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_ _---J <(< +<,W-

Consequently, number MA is lccated in the interval, distant

behind int-rval L0, L tc value [_i of intervals.

Since the M:inimum fcrm A* cf rumber A has a trace S*, an.

number A nis a trace SA, then

MA= A + (SA- SA) (mod p.) J-

but hence

SA -S* = L--_ (mod p.),

that also composes the asserticn cf theorem.

Ths method examined makes it pcssible to accurately det rminc

value of the minimum trace of a number, and therefore, the numD-er

tho interval in which it is arrangod/locat3d. By the compariscn of

values a,, S* and S., wp also accurately determine the value Cf the

character if a number.

Page 223.

However, fDr the operation with numbers in the sufficisntly

large range the length cf weight * in general is obtained

sufficiently large and the formaticn/education of weight rn
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requires the aldition of long numbers (weig 'ts), which impeees In=

practical applicaticn of this methcd.

Th-.refcre thz propossd method can be examined into somewhat-

other olan/layoit, namely let us assign th_ weights of small 1-' t

and will try to narrcw dc'.n tn- region of the

uncertainty/indeterminarcy of the minimum -.race of a number.

Let us select langth cf the ieight of a number, equal 1. 71i.n

the weight of a minimum Fseudc-crthcgonal numher is definedi aS m

i.e. it dcrease.s by valu =

and the waight of numb-r A will be defined as

fl-

M,= M -. ("i =,
A =

or

MI < MIC< MI (17 - 1 -

whe nc P

[-i< <S-S* (mod p,) <- (

(5.14)

Since it is assumed that w>>i, then with a sufficient ie

accuracy it is pcssible tc count

2x

21I
Vilup 1 Ist us selct in such a way that would be sati _7"_ "
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inequality

or

I > 1og 2 (n - I).

Then (5. 1u) signs th* form

(Ml .<SA -S* (rmod p.) -< Im 1,

i.e. th- minimum trace of a rumber can hava valuis either

= (SA- [m') (Mod p-),

or

SA = (SA- [mAl-l rndp)

As wT see, th- r2gicn of th possible values of the mi-mum

trace of a number substartially decreased.

Page 224*.

§5.2. 1-ethod of -.ulling.

In chapter 4 has already been discussed the method of rulling,

during numbering of the irterval ir which is arranged/located th

interes-ng us numbpr. Was there fcrmulated the theorem about the

independence thl result of nulling frcm the procedurs of prccpsF. 1:1

the present section is assumed the more thorough examination of thls

method.
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Ditsrm- at':on. g'ullinrg wr- -hill call1 sict m-thod of tha

transformation off the numter, Freset in the system of residual

classces, with which in :aach stace Cf transformation a number oil zero

digits in the rspres4-ntation cf a number increases also in this casz

is ensured the nonappearance cf the: convc-rted number beyond

ocrdIrs of that intorval cf thp rux-rical range in which it i

arr anye d/ located.

Determination. A minimum ruimber of nulling ,WMj we will cai

small frcm numbers of the fcra-

Wi (0, 0 . 0, aii), a(, ., a~). (5.15)

moreover
1= , 2, .. ,n-i1,

It is obvi:us that ir all mirimum numbers of nulling fcr- t"C

pres;,t system of basis/bas s it will bC

numb~ rs.

Theorsm 5.3. (Thp limit theorem of nulling) .Let at ths

standardized/normalized systemr cf bases/bases Pl, , p, ~

preset the number

A = (0,. 0, at, at .t Mn

lying at the interval

[ nP
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and let be is p:s.t a =inimum number of nulling

. . . . . . ... ...... .. i ..... •

Then the sum of thesp numbers

A

?ithgr !ios/rssts at the same interval or on its right horder.

Page 225.

Proot. Actually/really, additicn to number A of a minimim num-
of nulling Mi( ,_=) cannct form the number, greater

Pn

If would occur the inequality

A + Mi(p 1-. ) > (t + 1)
Pt'

it would be possible frc¢ numbers cf form (5. 15) to sel-ct nu:nb=r

Tj(p,-a), satisfying th- ccnditicn

! T( , ,, =(t + 1) J--- A.
P,'

But then would take place the inequality

which contradicts the determinaticn of a minimum number of nulling.

Thereby it is proven, which

A + Mjp,_.,) < (t + 1)
Pn

that also composes the assertion cf theorem.

Theorqm 5.4. if in the standardizei/normalized system of
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bases/hases is o:mset the numbs:

A=~~ *., 2

and if by nulling~ number A minimump numbers of nulling Mi,-,

obtained a number of forw

(0, 0,.'0, M-1)),

the;n th, mir-imum trace cf numrer A is dstermini~d by thc- eiuali'--v

S*= 1a~a~ ) I(mod p.). (.6

Proof. Conscutively,'serially applying the theorem of n 111in (

5.3 to number A and to obtained intermediate r-Asults (n-1) cf tim-s,

L we will obtain:

Al=A+M (p-m 1 )(0, ai,1 , a~(t).......1)* ot

A2 =A 1 + M2 v.~)=(0, 0, a(2) a(2 I~ , a2))

=n- An- 2 + M1t-t, (p,_,-al-2)) =(0, 0 . 0, a(?1-)

Page 226.

In this case it is assumed th~at in the case when nulled aicqit iJs

equal to zero, the corresponding minimum number of nulling -J.S m-ual

to zero.

Thus we obtain, that numbar A iS located in the intprve1-

Since minimumn trace S* fnmbrAi this value of digift c.-
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the latter/last basis/base with which a number is located in t..

first interval, thmn minimum trace can be determined according t c

value a, and a(n-'). let us ccnsider the pcssible relationships/:.ios

between zr and that obtained a(n-t).

Case 1. - ,

Th~n rcgarling the minimum trace it follcws

4 -=. (-')- .

which coincides with (5.16).

Case *W 2. a.< -')-I.

Then the minimum trace of nuMbt r A is UThterminqd so

that also it coincides with (5.16).

Until now, was examined the Frocess of ccnsecutive nullInj.

For thE purpcss of the eccnomy of the time of the execution cf

this prccedure in each stage the rulling can be carried out

simultaneously through twc digits. True, for this will be require

zertain increasi in +hp quantity of minimum numoirs cf hulling.

- . ....... ,, _ ,, . : .m ' ,l .,. n ir '
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Bast combina-icnr pair, intc which should D-i joined ths

bases/bases for each stagc, of nulling, is determined by the following

t he ors m.

Theorem 5.3. If it is preset 2s integt:s aj (i=1, 2, ... , 2s)

which satisfy th: inequalities

a, < a 2 < ... < a2 -I < a2 ,, (5.17)

and if th? sum of the pair products, formed from thase numbe:s

S= ajaj,

is such, that each of the numbers a, is encounterad in one ani o,'y

one member of this sum, then frcm all possible such sums, fcrmel. by

different groupings of weabers aj, cf the smallest is the sum

S =ata., +aza 2z- .,. -taa+. (5.18)

Page 227.

Proof. Let us demonstrate first the validity of this asse.tion

for four numbers

a1 <a2 < a3 < a,.

We form from these numbers all possible sums of the pair

products:

S1 = ata 2 aa4.
S2 = atas + a~a4,
S = ata, + a2a3.
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L nt us ccmpute thT differences

S - S =(a- a3) (a, - a4) >O,

S2 -S= (a,-az) (a3-a) > 0.
Hance it follows that S is the smallest sum. Let us ccnsid-.r now

sum of S, formed by the arbitrary grouping of terms a, (i=l, 2, ... ,

2s):

S = aja -4aaa; a7 a. a,,,.2

Here aj,, aj2, ... , ai., - number of (5.17).

4, If in this sum is not encountered prcducts ata 1,, then it is

possible in it to srlgct the sum of thp following two members:

After replacing this sum cf 7 on ata2,+aja ,, we will cbtain th

new sum of 31 for which cccurs the inequality

Furth ?r, in ST we find two m ebers a-aj,-aas_,a~ m and., aftPr

replacing them oy a:a:s-+aha., we will obtain sum of S2 , where 72 <S1 .

Continuing in tiis way tc minimize the obtained sums, lt us arriv--

at (5.18)

Corollary.

Page 228.

If it is Freset 2s+1 the integers, which satisfy the conditioen

at < a2 < . .. < au < a2.+,,
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where a1>1, then thp minimum siim of pairwiss products in which 9ach

number a, (-J=1, 2, ... , 2s+1) enters into one and only one me?,aber cf

sum, has the form

S ata2, + a2a2,-t + . + a~a.1 j + a-,+t. (5.19)

Actually/re ally, suFlemertirq term a0 =1 , we changm tr sum r'

all in, question per unit. Applying to the obtained numbers prevlous

theorem, we obt!iin (5.19).

Noti. Assertior., which sun, (5.19) minimum, is ccrr,;ct fo: a1=1,

* but in this casa can Rxist even scme ccrnbjnatjons of the memtPrs cf

sums, which ensure the saxe minimum value of sum.

For example, for three numbers

a1 <a 2 <a 3

can be formed thLe followirg sums-

St= a2a3 + at,
S= aia3 +a 2, (5.20)
S =aja2 + a3,

differance in wtiich will te

S -IS = (as -a,) (a2 - I) > 0,

S2 -S=(as -a 2) (a1- 1),
i*q with i =1 wa obtain, S2=S, in cther words both combinations of

terms give thr- idantical minimuir value of sum.
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In our cas - of th, associaticn of the. oasis of systm tcr -ht

economical carrying out cf pair nulling we allays have the low-cr' :

basis/baso, graPtgr thar unity.

Lat us givB thc rxamtles, which illustrate the executicn ',f

consecutive and pair nu1ling.

Let us select for this purrcse the system of the bases/b --s

Pl-- 3; Pzo; p3= 7 ; p4=13; p5= 3 1.

For the ccnsazutive nulling let us write out minimum numtbrs !f

nulling.

On basis/base p1=3
M1 = (1, I, 1, 1, 1) =I,
M21 = (2, 2, 2, 2, 2) =2.

On basis/base p0=5 -

MM=-(0, 1,6, 6, 6)= 6 M32=(0,3,3,3,3)=3
M 2=(0, 2,5, 12, 12)=12 M=--(0, 4, 2, 9, 9)=9

Page 229.

On basis/base ') 3 =7:

'M1 3.-=(0, 0, 1, 2, 15) = IS ,3= (0, 0, 4, 8, 29) =60

M23=(0, 0, 2, 4, 30)=30 M5 3 =(0, 0. 5, 10, 13)=75

M33---(O. 0, 3, 6, 14)=45 M6 3=(0, 0, 6, 12, 28)=90

On basis/base p,=1 3 :
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M, = (0, 0, 0, 1, 12)=105 M% = (0, 0, 0, 7, 22) = 735
Mu =(, 0. 0, 2, 24) 210 a, =(0, 0, 0. 8, 3) = 840
MU= (, 0, 0, 3, 5)=315 A19,= (0, 0. 0, 9. 15) = 945
,%I,,= (0, 0, 0, 4, 17) 420 *it1,.= (0, 0. 0, 10, 27) = 1050

.M,, = (0 0, 0. 5, 29)=525 Mit = (0, 0, 0, 11, 8) =1155

Me, =(0, 0.,0, 6, 10)=630 M1 2,=-(0, 0, 0, 12, 20) =1260

-,For conducting the pair nulling, as it fcllows from th= t'hirc'

th,?cem of nulling, to 3-cs"t eccrcn'icallv ] I~n baSes/basr-s I.

following paizs: pip4, and FP3-i

In this case the tcta2. quartity of necessary minimum numt-r s

will be

S= PIp+PVp3 74.

Are conveniently placed them into the following tables.
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The table

M a--0 a, =2

0 (0, 0, 0, 0, 0) (1, 3, 6, 0, 13) (2, 1, 5, 0. 26)
1 (0, 2, 6, 1, 27) (1, 1, I, I, 1) (2, 4, 0, 1, 14)
2 (0,0,1, 2 , 15) (1,3,0.2. 2 2 " 'N

(0, 3, 3, 3,3) (1, 1, 2, 3, 16) (2, 4, 1 3. 29)
(0,0, 2, 4, 30) (1, 4, 4, 4, 4) (2, 2.3.4. 17)

5 (0, 3, 4, 5, 18) (1. 1. 3, 5, 0) (2, 0. 5. 5. 5)
6 (0, 1,6,6,6) (1,4.5,6. 19) (2.2.4,6. 1)
7 (0, 3, 5, 7, 2) (1, 2, 0, 7. 7) (2, O 6. 7. 20)
8 (0, 1, 0, 8. 21) (1, 4, 6, 8. 3) (2, 3, 1, 8. 8)
9 (0, 4, 2, 9, 9) (1, 2, 1. 9, 22) (2, 0, 0, 9.4)

10 (0, 1, 1, 10, 5) (1, 0. 3, 10, 10) (2, 3,2, 0. 2 )
11 (0, 4, 3, 11, 24) (1, 2, 2, 11, 6) (2. 1,4. 11. 11)
12 (0, 2, 5, 12, 12) (1, 0, 4, 12, 25) (2, 3,.3, 12. 7)

0 (0, 0, 0, O ) (0, 1 0. 0. 19) (0, 2. 0, 0. 7)
1 (0,0, 1, U, 2.>) (0, 1 1,0, 10) (0.2. 1 .0. 29;
2 (0, 0, 2. 0, 14) (0. I, 2, 0. 1) (0, 2. 2, 0. 20)
3 (0, ,3, 0, 5) (0, 1. 3, 0, 24) (0, 2. 3.0. 11)
4 (0, 0. 4. 0, 27) (0. 1. 4, 0, 15) (0. 2, 4, 0. 2)
5 (0, 0, 5, 0, 18) (0, , 5, 0, 6) (0, 2. 5. 0, 25)
6 (0,0, 6,0, 9) (0, 1, 6, 0, 28) (0, 2, 6, 0, 16)

a3 a 2 = 4

0 (0, 3, 0, 0, 25) (0, 4, 0, 0, 13)
1 (0, 3, 1, 0, 16) (0, 4, 1 .0, 4)
2 (0, 3, 2, 0. 8) (0, 4, 2, 0, 26)
3 (0, 3, 3, 0, 30) (0. 4, 3, 0, 17)
4 (0, 3, 4, 0, 21) (0, 4, 4, 0, 8)
5 (0. 3, 5, 0. 12) (0, 4, 5. 0, 0)
6 (0, 3, 6. 0, 3) (0, 4, 6. 0, 22)

Pago 230.
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Examp!E. T: 1,ad the ccnsr.cut-.v- nulli.ng of numter A=(( , 3,

4, 13) and to determine its minimurr trace.

we carry out the nulling:

S.4, .4 -0 =(0, 1. 1, 4, 13).

.41-=.1 -='.!4 (0, 1, 3. 4, 13)-(0, 4, 2, 9, 9) = (0. 0, 5,0, 22),

A123 = A12 + V2= (0, 0, 5, 0, 22) (0, 0, 2, 4, 30) = (0. 0, 0, 4, 21),
A 4 4=A jz3 + M 49 (0, 0, 0, 4, 21) +(0, 0, 0, 9, 15) =(0, 0, 0, 0. 5).

Since a,=13, a nd - )=5, frci (5.16) we obtain, that

SA 9.

Sxamole. To !aad tle pair nu!!ing of r. umb,.r A=(0, 1, 3, 4, 13)

and to determine its minirum trace.

We carry out the hulling

A 14= (0, 1, 3, 4, 13) +(0, 4, 2, 9, 9) = (0, 0, 5, 0, 2),

A 1 ,=(0, 0, 5, 0, 22)4-(0, 0, 2, 0. 14) =(0, 0, 0, 0, 5).

?rom (5. 16) it follows that S*=9.

§5.3. Method of the evaluation cf intervals.

Determination. We will call critical the case when occurs thm

ra laticnshi p/ratio

--SA n- 2 -o, (5.21)

where ? - number of zero digits in the representation of numoer A.

Page 231.
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The h-nc,: .-ritical case for num~ber A occurs with the fo11,)win7

of the value c.- riumbpr A:

ca se1
.4=a,

A -- a,
pn

A4 2n -2- +a.

Pn

Case of 2

A=(p.- 1) -a,

A4 2)m If - 7. - + .
Pn

-ze wiol? rcn-ne,4ativte rumber, which satisfies th':

conditioni'

Pm

D~ration. Tho presence cf thq situation when rumrnbr I

relates tc the first case, we will subsequently call first typ-

ctitica.lity, -th2 situatici during which number A relates tc th-4

second cass, wz w4-11 call seccr! typq criticality.



Number its.lf A we will call first or second type critic;l

number or simply critical number.

In other worls the critical caree occurs for tne numbers, . :c

lie i n (r.-2-w) tn- irt~rvals -rcm btth s i'es c,: i-rva

is located the ainimum fcrm ot a numcer.

With w=n-2 w- obtain k=n-2-,O. In oth?- words if a numtr hav-

n-2 zerc 4igits, then the critical case is degenerated into e]: lit

--S:. the det:.rmining minimum Fseudo-orthogcnal number.

Logical therefore to trace the methods, directed towari t

decreaso of value k=n-2-w, the characterizing zone

uncertaintv/indat erminancy.

In vie.w of constancy n, which is ditermining a number o'- :as-

of system, decrease k can be reacbed conly due to an increase w, i. .

this transfcrmation of number A, with which increases a number of its

zero ligits. on this rests the described abcvq aethod of nu-iin:.

Page 232.
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Let us considsr a scmewhat different way of disclcsing/sxpandir.

the uncertainty/indetervinancy.

Theorem 5.7. If in the standardized/normalized system of

K bases/bases P,,P2, ,P is ioresft critical number A=(m,, , an,l

ifr asis/ bas a pt (j=1# 2, 1.,(-)) is sati sf ied ths

condition

p(n- [)+n-3.p,,, (5.22)

thcn for number A, def.nel as

A= Apt,

eithar iops not occur the critical case or occurs a criticality of

the same type, as for number A.

Proof. First type greatest critical number is the numb-r

-* a hence smallpst ncncritical number it will be

By second type smallest critical number it is

Ali - (p.,--n + 2) + I,

whence the greatest noncritical number it will be

Anma = (p-n + 2)
Pat

If as a rasult of the multiplication of the initial rum!br A by

basis/base pi product '=Apt ceases to be susceptible, then -.t is

possible to !stiblish/install the type of criticality only in such a



DOC = 81023911 PAGF

case, when the number domain of ttq first type of criticality,

multipliad by p,, does not intersect with the region of seccnd typ-

criticality, and the number dcmain of the seccnd type of criticality,

multiplied by pl, it does not intersect with the region of first type

criticality, in cther words it cccurs the following

-S relat ionship/ratio:

Pa

in which the border of seccnd rejection re9gion is dstermrind by ve.l,'j

n-3, and not n-2 on the strenuth cf the fact that the product of any

number to basis/oas- p, has in its represantation at lqast cn zerc

digit.

Page 233,

Tho given ibove rplationship/ratio can be registered in th. fo-M

(5.22) . It is logical that with satisfaction cf condition (5. 22)
4

number A, being multiplied by pl, it cannot change the type of its

criticality to tha opposite.

If after the multiplicaticn of the critical number A by P, th'

product

-- Api

is noncritical, then the type of the criticality of number A anrl its

character can be d~t~rm1Jrd cm tho basis of the following theory.
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Theorem 5.8. (about the type cf criticality) If in the

standardized/normalized system cf the bases/bases where

P3 1 ) P (n-- i)

is preset number A = (c, ... o6) with trace S, and if number Ap,

with trace SA,i and by c ~atactsr AAP, it is nct critical, th=n in -

case, if value

= +AP,+- PS-p (5.23)

is equal to zero or multiple pl, number A is first type critical

number and its character is equal tc

AA-P (5.24)

Othgrwise numbr A is second type critical number. Valus pl,

p 2 , p3 are detarminad by the expressions
p!- I P!- Pi-I

A-I Lo, Ps~ not,1  p i yjI. (5.25)

Proof. Since numbor Ap, is multiple pi, then it can ba divided
4

on p, by simply step-by-step division. In this case will be obtaines

the quotient C of the form
C -A-L -- (Ch , .. :., X, . .. ,)P

1

which coincides with number A in all to significant digits, exc pt

digit in basis/bass p!. Belative te digit on tasis/base *p, cccirs

the uncertainty/indteruinancy cf the type 0/0.
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Page 234.

The value of digit X can be determined on the basis of the d.scribed

in chapter 3 methods of disclcsing/cxpanding thi

. uncertainty/indeterminancy during the division into the basis/base.

With the formation/education cf the quotient C could not have the

places on cutput/yield fcr the ranae since number Ap lis/r sts

in the range to, 91) ar.d tasis/base pi is its divider/dencminator.

Therefore number C is obligated tc lie/rest at the initial intervals

of range [0, ).

Hance, if number l is first tpe critical number, th-en it is

obligated to coincide with nunber C. i.e.,
C-A,

But if number A is second type critical number, i.e., it

lies/rests at the latter/last irtervals of numerical range, than

4-" numbers A and C differont in value Cf&, and since in them ccincide

digit in all bases/basps, besides digit on basis/base pi, than is

obligated to occur the relaticnsbip/ratio

Xa'.

Further, if number A is first type critical number, th-n with

its multiplication on p, cannot bave places cne output/yield beyo. 4

the limits of num.rical range.
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However, for numbers of the second typi cf criticality with h

multiplication on pi occurs at least one output/yield beycond the

limits of range. Therefore, if nuwber A is first type critical

number, then with its addition %ith itself itself p, oncp occur tho.

following equalities:

0O2 IA±Tht A2A-t1it+ YtI'

0= AA + L2A + 712t - ASA ~+ Y211 (5.26)
0o AA + IAM' +13 -S A41A 4t + Y3t9

0= '&A+ A(P 1 ... tA+ lIP 1-Ii -AA I . + YVI-i. t .

Then, summarizing the right and left sides of equalitiss (5.26)

and taking into account (5.23) and (5.25) ,we obtain

0 =PIA~A + P2 - AAP, PI + P3

o r

AA- PI

Thus, for first type critical numbers valu-i 9 it can take c~ily

the three values

4

e%=o, e3=P5, 03- -PI.

Page 235.

Let us show now that for numters of the second typs of

criticality value 9 cannct have values, equal to 8j, 92 and 93.

Let number A (at, a2,., x~ with trace SA be a number of
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second type of criticality, i.e.,

(p._-n +2) <A < O

but number C=(at, a. (; n with trace Sc is obtained by the

step-by-step division of product Ap, into ba-sis/base pi, i.!. it

lies/rests at the region

According to thq condition of theorem, basis/base p, an-I p,

they satisfy the inequality

*p,> (n- IPt,

hence

->(n- 0I

* i~e. numibers C sn A, lie/zsst at first and lattir/last int~rvals

~,respectively.

in other words

4 whence

at K ei(mod pi),
K =1, 2,...,- I

Let us take for the certairty

i.e. we will count aj>, and let us determine the differencq AS i.1

weights SA and Sc, for it let us introduce minimum pseudo-orthogonal

mlach number of the form

NIdO C I.
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It is obvious, that either

SC (SA +SAD (nod P11),

or

SC =(SA + S- 1)(MOd P-)

or, which is the samp,

AS St
or

AS=Sok- I.

Then va lue 6c f or number C will1 di f fer f rom 8A by he, i. A., is not

less than to ltha numbor of transitions, which occur with addition

St of very with itself pt once. Difference 6e cannot be qaual to

zero and cannot be multiple pl, since with the addition of valute

Sk< .p~ of times a number of transitions cannot be equal to 0 or

4 multiplp pf.

Thus, for numbers of the second type of criticality valuG 8

cannot takq the permissible fcr it values, equal to zero or mu1.tiol'4

pl. This composes the asserticn of theorem, which consists in t i'e

fact that value 0 detqrmines the type of the criticality of an

initial number.
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Note. under theoreff conditiors we learned to determiniq thck

character of a number in the case, when it is first type criwtical. It

*is possible to damotstrate symmetrical theorem, also, for se-ccnI typ4E

critical numbers. However, it seeis that most simply in this case to

switch over to number &s-A, wbich is f irst type critical, to

determinq its character AJ*A, and then to detarmine tho character

1; of number ..

Theorem examined above atout the type of criticality makqs it

to possible to determine the character of a critical number, if it is

kncvn that aftar multiplicaticn by basis/base pt, the one satisfyirg

* theorem conditions, product Api loses criticality.

Howevsr, is feasible the case, when after multiplicaticn. by p,

number Ap, remains susceFtible. in this case it is obvious thal any

4 critical number can be ccnverted into the noncritical by consecutive

multiplications by the bases/tases, which satisfy the conditicns of

the nonintersection of relecticn regions. In cther words if is presat

the system of bases/bases, then can be selected the sequence of ths

bases/bases by multiplication by which any number can be brcuc~ht out

from the region of criticality. There is no dcubt that the sel-icti~n

of the optimum sequence cf multipliers is connected with the
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selection of bases/bases thsmselves and it will be varied in vach

specific case.

Page 237.

*Lat us not-? that on selected basis/base pi is superimpossd on'Ly

the limitation

p1(n- I)+(fl-3)<p,

or if multipliar is selacted multiple pl, then

kpi (n-I1) + (n -3) (p.,

whencg

p1 , 'if+3
n-I

For the purpose of the riuction of ths length of the procias of

the definition of the character of a number it is desirable

multiplisr value to choose as closte as possible to the numbesr

mI= [Pqnl3] Pn 4!-L

4 ~ if p,,+2 is not multiple n- 1, or as close as possible to thcn rumbir

if p,+2 is multiple n-1.

As the first multiplier which subsequently we will designatea

through vi. it can be selected one of thne bases/bases either th:

value, multiple to any basis/base cr the product of several

bases/bases.
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The selection of one or the cth-r value cf multiplier v, is

determined by the requirefent cf the greatsst proximity from below to

value m, or M2 . Let us assume ttat we succeeded in satisfying this

condition, and oe have

but in this case product Av remains in tha critical range. Let us

find the number of interval zj, at which lies/rests small numbe.r

such, that product NmviAv already leaves critical range

0, (n--2) (-, i.-

g~zj.vj > (n- 2)

whence

> n-2
v!

or value z, can be defined as

=i [!-= 2 +i.

4V
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Page 238.

La t us fini now this small numter N'11, from interval O, z'- -)

,\,,Xv > (n - 2) JD

Pn

or, issuming that n-2>vj, we will cttain

• 3 Vm = Vt p '

It is cbvious, fcllcwiny factor v,, which is chosen for

* anal)gous reasers, It rust satisfy -he requirements so that ths

number N,,, multiplied by V., wculd not fall in.c second :rjaction

69region,ie.

" .V,,,mV < (p, - n 3).'
Pn

whence pn-+3
V2<L [ 9-2] +IP

Vi Pn

Continuing this prccess, we with each step/pitch minuen- is th

section cf the predicted determination of the initial number.

With sach step/pitch increases the value of next factor, sincp

the right boundary of noncritical zone increases, and the scction of

the predicted daterminaticn of an initial number is reduced.

Let ,is consider the use/application of the described method in
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thi mcre, spac--fic casc-. Lzt the numbeir of bases n=9, and the ',-:gcs-

base lie/rsst within lilnts 314p.~< 6 3 . 4~e will count p,= 4 7 .

1st step/pitch. First Afactcr vi is defined, as is known, frc-

the condition

v, (n - )+ (n - 3) Pn
0 r6

-4.5
Papje 239.

The smallest number, which lcses criticality with tha

multiplication on vi, lJEs/rasts at thq interval wit"-h number 21,

definpd from th3 coneitic'

>n-2

or

zj=2,

and the4 value of the smallest rumter is defined as

2nd strzp/pitch. Let us determine sscond factor v,, on tht? basis

of the fact that an initial numter can be locat-id not more to th--

right not first fourth of seccnd interval, i.e.,

whence n4 P

V2 32.
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The smallast of th- rumbcrs, which lose cr-ticality with t a.e

multiplication

N'=%v, > (n - 2) Pn

or

-" L>S7W 7,

lies/rz.sts at first fourth or f ±:st int-rval. But in thce case ot

second type criticality it is placed in latter/last fourth of

latter/last interval. rf an initial number r3mained susceptibla, l.t

us satisfy the third steF/pitch.

3rd step/pitch. Let us determinre the third factor of the

condition

7 --0. .v, <(p,- n+ 3) - -,

whence
v3< 187.

Ths number, whizh iid rot lose criticality with the third

, multiplication, is located in the region whose right boundary is

defined as

N,., > (n- 2)- "

or
ret> 187 pn

i.e., is located in a rpgion less than 2

Page 240.
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4th step/pitch. If an initial numbgr remained susceaptibla thsr

the fourth factar will be detereired from the condition

or

v< 1095,

w henc- N",1  7
JO 195 p,

i.e., ths number, which remains critical after the 4th step/pitch, is

located in a region 1-;ss
4pi

lhe 5th step/pitch. let us find thl? fifth factor

it is niot diffizult to be convinced of the fact that the re~gion o:

the cletermiration, of an iritial nU~ber after z steps/pitches is

reducei nct less thar. v= orcs where

Intending sufficient tc reduce the sizes/dimensions of the field

oil uncertainty/! ndaterminancy to pa, we will. obtain that a zumb~.r 3f

steps/pitches m will be determined frcm the ccndition

or
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w he nce

In V,

With n=9, p,=47, &= 1 0k

" In 74-k In 10-2 In'471

or InS

rn > 1,4k - 3,6,

i.e., fcr rang=-108-10 O we obtain m=8-10 multiplications.

- Page 2 41.

Let us illustrate the described prccess based on specific example.

Let be assigned the stardardiz~d/ncrmalized system of the

foundations:

Pt -=3, p2=- 7 , P3= I, p4= 13, Ps = 17, Pq = 19, p.,= 23 , Ps = 25, P9 =47

with th!.= range, 2=26 213 412 225 and with the value of interval

-- = 557 732 175.

Example. To find the set/dialing of factors for determining tha

character of a 3mall number by methcd of the evaluation/estimate= of

intarva ls.

The first factor is determined from thp condition

v, P. -n--3 41
n-I T

i.e., is the first factor must be sqlected the noar foundation p1 =3,



DOC = 1023912 PAGE

i.e., vt=3. Then th number of the ntarval at which lies/rasts

smallest number, which emerges with the multiFlication bryord th.

limits of critizal sectior [0. (n-2) - ), is determined from th-

condition

Z-2 =3,
vt

i.e., the number lies/rests nct mcr _ to the right interval I..

the smillast "noncritical" number .xists

Hence the sconi factor is defined as

. p-n-- - 3 41
-= '- 13,6.

3

and as the second factor can he selected foundation p,=13, i..,

V.=13, 3nd the smallest "ncncritical" number will be

N(2)> n -2 R 7 .p

V2n 3

we determine th3 third factor

p,-n-+ 3 f 533V3 4 =~ -. = 76.

As the third faztor can be selected the product of fcurdaticns pt-J,

-4 psr25, i. ., v3 =75, in this case th4 smallest noncritical number
V3) n-a J- = 5"

V3 Pnf5l P

For the fourth factor we cbtain
42 J 2

Page 242.

As the fourth factor can be selected the product of foundations p,=3,

P2= 7, p82 5 , i.e., v4=525.

4-
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Since in tais case product we obtain at least with three zero

numerals, thp smallest number will ta determined from the cendition

V( -4 5 I .

ii assume that tha fifth factor will be comprised cf t.a produc +

not less than of thr-e fcundaticrs. then it is Ietermin-d so
p.---5_ _ -94515.

m in %

As the fifth factor can te undertaken the product of the

foundations: p3=11. ps=17, p,=23, i.e.. vs-4301 and then the sialilst

number, which lases criticality with tha multiplication, will o

* determined from the condition
(.- s -4 Yo 5 .9

Hence for the sixth factcr
ve , -- 36988,6,

which zan be obtained as the Frcduct of foundations p,=3, p3 =11,P7
23 .

p q=47, i.e., vg=35673 and, therefcre,
-4

The seventh factor assumes the presence not less than four of thq

factors P 8 r

namely p,= 3 , p3=l1, p,=13, ps=1 7 , 09=47, i.., V7 350493, whence
f(7) ;,,-6 P 3 Y9

mn V7  p, 5493 .7 '

Further, the eighth tactcr
t< pn - =- - 4906902

min
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can be represented as the proauct of foundaticas p2,=Y, p,=l9, D7=23,

poa25 , p,=47, whence ve=4621275. Then

V b.-. P'f 2 P
.i --- F , pf 4621275 p.

or \' 241.

Page 24J.

The ninth factor
pn --n 48 J.)

V,< - I6289325

can be represented as the product cf th.3 foundations: pz =9, p=1i,

p2,s 5 29, p9=25, p%=17, whence vo10628M25. Thqn
#) -- .9 I .9

MIR" v9 . 1062893-25 p.

or . m .6.

In the casa when after nire rultiplicaticns a number dil n)t

nevertheless lose criticality, it, as it was explained, canrct b4

more than 6. The contraction cf rarge can be continued by

multiplications, but it is consider-ad by more advisable to compAre it

with one of tha initial 6 numters of the first interval. In th- case

of coincidence it is claived that this number of the first s-banl th?

known valuq cf zharac #.r, in the case of noncoincidence - an tnit 4 al

number is seconi type critical.
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§5.4. Method of expanding the range.

- thois examined abcve of the definition of the minimum trace of

. a number, number of the irterval Jn whizh is arranged/locat] A

number, or the :haracter of a number are characterized by systematic

simplicity, and their realizaticn is possible both in the crns-cutiv?

and in the parallel perfcrmancp.

In some of them is required the use of ccnstants, which,

naturally, assuxes the presence in the arithmetic unit of the

accumulator/storage of the constants of small amount of capacitance,

but working at the rate arithmetic unit.

The realization of these methods in the parallel parformanc?,

naturally, is azcompanied by a noticeable increase in the equipm'.nt,

and in the consecutive performance - by long time of the fulfillment

of process.

Lot us now move on to the examination of some other methcds of

determining the position characteristics cf a number, in particular

the method of expanding the range.
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Let b.% assignzd the system of foundations P,.P 2, . p wit h rar -

P, orthogonal by bases B,, B2 ... ,B,, whose weight respectively

Mi, M2 , .. M.nm. RSgarding

B1 1
[ i~ 1, 2, ... ,.. .

In this system is assigned number A=(a,,2,

Page 244.

I.

Let us consider the now expanded system with which is connected

additionally foundation p,: Pt, Pz,. .. , p,+, rang& of which

orthogonal B,, 32, ... , B#i, + and their weight , ... ,m ,;-+j,

morpover

B" = Pt

1 i=1,2,...,n+I.

Number A in this system will be represented in the forn
4

A =(at, a2- .. a,0, + It is r.quired on known numerals at, a2 .  a of

the reference system of the fcubdations for determining the value z_

numeral am+t of number A in the expanded system of bases. It is

logical that number A in the expanded system of bases will bi a

proper number, i.e., prc¢lem is reduced to the determination of thi

minimum trace of a number in the exranded system of foundation3.

Let us write expressions fcr number A in essence and _xpan-i l
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svstems

A = + M292 + - + an + (X+1 A+1 -)7P~~P

E.jUalizirng tha right sides cf th-es4 expressions and dptormi n±.rg

from the obtainid equaticn urkr.cwr Fineral a,+, for introduced!

rouniatir. Pn~t, de will ottain

r Mj-flPS+I + CgsM O~
= ~ Pi + ,P1.

+ as~ u~ (tA - rAPII4I)

ar -l~ ( r r~ . t (5.27)

For simplification in expression (5.27) let us demonstratp tho

fellowirg lemma.

Lavma 5.1. If is assignAd the basic system of fourdaticns

* . P~ ~.~r.with rarge J, and vit ' vsights of oithogonal bases of

in.m 2,. in.,, and is assigned the expanded system of foundations

P1. P2,--pm. p,,, with range P=p, 14 and weights of orthogonal bas-is

~ tha n value m1-m-jp,,, 1 is multiple P1.

Page 245.

Proof. In izco.-darce with the detsrmination of orthogonal rbasr-
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we have

B B i= 1 . P 1,
PI

either
m1 P= kip± pi, (5.28)

r~. and also

Pi

i=I, 2,...,n -I,
or

I iPn+,o = p = 4, A, (5.29)

* wh-re ki, k - wholc. non-negative rumbers. Subtracting (5. 29) fr-n

(5.28) , we will obtain

(m,-r ,p~. = (k- i) P!. (5.30)

since T contains pi to the first degree, and in right sid4 (5. IJ) t

is ccrtained fa:tc: P, then

-Mi ;map+t

must contain by factor Pt, that also proves th: confirmation cf

lemma.

Let us dpsignatp through ki the whol? number:

x =a mtpn t-Mi (5.31)
pA

Thc.n (5.27) it is possible to rewrite in the form

or

mn+f n+-, rA X .1 -- APL+ (5.32)
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Determination. Value

(FA (ij(5.33)

let us name the generalized sum of the nume4rals of number A cr the

simply generalized sum.

Page 246.

Let us represent value GA in the form

aA kni- q

wheret k and~ q - wholea non-negative numbers, uoreovpr

q < Pn+t.

Then (5.32) it seems in the fcrm

.Ja~ + rA (A -k) pn+, + q (5.34)

or
f~+a. + rA =_q (mod Pn+i). (5.35)

Latter/last expression is the formula of the expansion cf thce

range of numbers, transfer Pquatien from the representation of a

number in the basic K-band the representation of a number in the

expanded rang.

Lit us consir now how by using the formula of expansion

(5.35), it is possible tc switch cver to the representation of a
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number in the :?xpand~d rangi.

AS is known, fc~r the assign-pd system of the foundaticns for, in

particular for the basic system, there is one and only one

set/dialing of minimum pseudo-orthcg-cnal numbers.

On foundation pt: Mal1, Man with the ranks respectivs-1y

rit, r2,, . , -t

on f oundati on P 2: MM2 ma, Mai with the ranks r;:s-.o-ti-v-ly

r=, p- .

On f oun datio 4 cn pn-: Mal n- I~ , I va.n ith the rarks

respectively r,~, ~Ccnstructing initial number

A=(j~2 ,..,~i~~)from minimum pseudo-orthogonal numbers, w- w,-Ill

o b a n t r- n m a M A = (a , 2 . a ,X n , S A ), (5 .36 )

whose rank acccrding to the thecrem about the rank of sum is d f ins-I

as

Thus, in tftq basic system is designed number Al.% whose rank is

accurately known, coinciding with the initial number A in all

numerals, except numeral ct the latter/last fouandation.
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Furthermore, about number A to us it is known that s-nc-. it is

obtained by addition n-1 of minisuir pseudo-orthogonal numbers, th..

its greatest possible valua

,,.,(.IA) = n-I- __N 5,38)

cannot b; located more to th,. right cf

the (n-1) interval in the basic system of foundations.

F~r the exoanded system cf fcundations also there is an cnly

system of minimum pseudc-crthcgcral numbers. In particular, on

foundation P, minimum pseudo-orthoqonal numbers take the fcrrn
.. ,. ==(0, 0.. 0.

i.0. * they are numbers of form

I(5.39)

i - t [p -p,-l -

Pn

Wq will subsequlntly each of these numbers accompany by indx,

which indicates its multiplicity relative to the smallest numbh. .

After widening number MA from (5.36) according to tha formu!i
" I ~~~~~~~~~~~~~~...........-:: :........................................... ,..-., .c n:;... --- F .......... i = "...... ....... -
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of expansion (5.35) using the value of rank (5.37), we will ootair

A' = (a,, cc.. S.A. . (5.40)

In the expanded system of foundations number A' differs from

unknown quantity A in terms of numerals of two latter/last

f oundations.

Page 248.

Furthermore, since the expansion, without varying number value,

only defines its numeral cn fcurdation p, , then on the basis (5. 3d)

it is known that number A cannot te more than (n-I)-,
P,

arrangd/locatal in thp first interval of the expanded systm r0, 2)

it is a proper number.

Lat us adjoin now to numter A' to that detarmined (5.40)

similar of minimum pseudo-orthogoral numbers (5.39), which will

ccnve3rt numeral on fcundaticn p, in a, the minimum number

Mo"n(0 0, **0 P" SOIJ

of multiplicity k8 ,,, wherq

P, (a,- SA) (m odp).

As a result of addition wc will obtain numoer A" cf th fcrm

All a -iaa(" i (5.41)

In this cisa if had place SA=C, then the transformations of

number A' was not required even ttgn

A'= A,

h ~-
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i.e., (5.40) is the unkncwn expansion of number A. Actually/really,

all numerals of numbers A and A' in foundations Pi, P2 ... ,p ccinc4.d-,

and in the value number A lies/rests at the first interval of the

expanded range, i.e., it is the urknown proper number.

If did not occur situaticn SA=an, then we obtain number A".

noreover, if th:? multiplicity of number 'qnn was no more than

ka < p.-(n-(n

then also it is possible to claim that obtained numoer A(2) is the

unknown ixDansion cf number A, since to number A', which does not

exceed (-1) " , adjoined number which does not exceed

(p-n-]))--, th-) sum of these numbprs does not exceed a- va!le of
Pn

the first interval.

The indefinite situaticr appears, when

' , > P,,- n - - l n

Page 249.

In this case number A(') can to placed either in the latter/last

(n-i) ID parts of the first interval [9, 8), or in the low-cr.-r
Pn "

(n-2) y parts of tht seccnd interval [d, 2&], and then unknown 4-s th -p.'IP
I
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number

A (a,, a2, a, (a" 1 I) (nod p,,.,)).

Lat us illustrate the mr.thcd examined based on examples.

Let the basi: system be assigned by the foundations:

Pt=5; P2 7; p3= 1 1; pa- 13; p5 17; p8 =19" p- 23.

Let us compute for it the values cf orthogonal bases and th-ir

weights:

Bi =29 745 716 m 1n --4 B5  34 994 960 ,n- 16

B,=21 246940 m2 -4 B,= 15655640 me 8

B 3 =30 421 755 m3 =9 B7 = 8083075 m 7 - 5

B4 = 8580495 m,=3

Range of system 9=37182145.

L.t us compute tho values cf minimam pseudo-orthogonal numbers

with their ranks and multiplicities.

On foundation pt=5:

Mit =(1, 0, 0, 0, 0, 0, I) r11= I k,, -2

M 2t = (2, 0, 0, 0, 0, 0, 2) r21 =1 k,-= 4
M3 1 = (3, 0, 0, 0, 0, 0, 12) r31 =5 k31= 1

M 4 =(4, 0, 0, 0, 0, 0, 13) r4 1 = 6 k~t , 3

On foundation p2=7 :
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Mt2 = A0 1, 0, 0, 0, 0, 2) r,:-- I kj2 - I

M22 = (0, 2, 0, 00, 0, 4) r= =2 k. -= 2

M3=(0, 3, 0, 0, 0, 0, 6) r32=3 kr =3

M= (0, 4, 0, , ,0. 0, 8) r =4 k42=4
Mu= (0, 5, 0, 0, 0, 0. I0) r5=5 k52 =5

A2=( 0, 6, 0 , 0, 0, 12) rr=6 k&= 6

On foundation p 3=11:

M13 =((0, . , 00, 0, 1) r 13 = I k-. 9

3M =(0, 0, 2,0, 0,0, 11) r, 3 = 4 k.3 - 7
M 33=(0, 0, 3, 0, 0, 0, 21) r33 7 k.3.= 5

M1=(O, 0. 4, 0, 0. 0. 8) r3= 5 k, = .3

M 3 =(0, 0. 5, 0, 0, 0, 18) r5.,= 8 k3= I

M63=(0, (, , 0, , 19) r. 3 = 9 k63 :Ii

4 M 73 = (0, 0, 7, 0, 0, 0, 6) r-7. T k% 8

Ms = =(0, O, 8, 0, O, 0, 16) r83 O ks -= 6

M M93 =(0, 0,9,0,0, 0, 3) r 93 = 8 k.3 = 4

M 10,3 =(0, 0, 10,0, 0, 0, 13) ro a  I I k103= 2

Pale 250.

On foundation p4=1 3 :

Wj4=(0, 0, 0, 1, 0, 0, 22) r1,=5 ki4= 4

M 2 =(O,O, 0, 2,0, 0, 21) r24=5 k2)= 8

M 34 = (0, 0, 0, 3, 0, 0, 20) r 34 =5 k3 = 12

M4 = (0, 0, 0, 4, 0, 0, 5) r44=2 k,4 = 3

M5, = (0, 0, 0, 5, 0, 0, 4) rs4 = 2 ks = 7
M64---(0, 0, 0, 6, 0, 0, 3) r@4 = 2 k6 4 = 11

M 7 =(0, 0 0, 7, 0, 0, 11) r74=4 k74= 2
M 84=(0, 0, 0, 8, 0, 0, 10) 9,= 4 k8= 6

M 94= (0, , , 9, 0, 0, 9) rg4= 4  k/ = 10

M1o,4= (0, 0, 0, 10, 0, 0, 17) ro, = 6 kAo1  = I

Mt,i4=(0, 0, 0, 11, 0, 0, 16) rit,4 -=6 k 14 = 5

M 2 4= (0, 0, 0, 12, 0, 0, 15) r2,4= 6 k,2 4 = 9

On fourdatiorn ps=1 7 :
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A41 3 = (0, 0 0, 0, 1 O, 5) r,5 = 2 k 1s = I I
M2=(0, 0,0,O, 2,0, 19) r= 6 k23= 5
M3=(, 0,0, 0,3,0, 1) rs= 3 k3=16

M4=(0, 0, 0, 0, 4,0, 15) r = 7 k=10
M"=(0, 0, 0, 0, 5, 0, 6) r3= 6 k5= 4

Mc:=(0, 0,O0, 6,0, 11) re5= 3 " k6z- .5

M76 = (0, 0, 0, 0, 7, 0, 2) r15 = 7 k73= 9

M85 = (0, 0, O, 0,8,0, 16) r$5 = 1 k 3 = 3

M9 5 = (0, 0, 0, 0, 9, 0, 21) r 95 =13 km = 14

M10,5= (0, 0, 0, 0, 10,0, 12) ro,=12 k 05= 8

M. 1, 5 =(O, 0, 0, 0, 11, 0, 3) rjj,5 =II kt5-= 2

Mtz, = (0, 0, 0, 0, 12,0,8) r12 ,3 =13 k,25 = 13
MI = (0, 0, 0, 0, 13,0, 22) r13,5 = 17 k,3 = 7
M 4 ,5 = (0, 0, 0, 0, 14,0, 13) r i,5= 16 kit5 = I
M15,5= (0, 0, 0, 0, 15, 0,18) rls,5 = 18 k2 55 = 12

3418,5 = (0, 0, 0, 0, 16, 0, 9) r16 ,5 = 17 k1t 5 = 6

4On foundation p6=1 9 :

Mt 6  (O, O0.0, 0, , 1,12) r16  3 kiG- 13

(0, 0, 0, 0, 0,2, 10) r = 3 k26= 7

%,36= (0, ,0, 0, O, 3 , 8) r3= 3 k36 = 1

Ma = (0, 0, 0, O, O, 4 , 20) r, = 6 k 4 = 14

'5= (0, 0, 0, 0, 0, 5, 18) r o= 6 kft= 8

Ms = (0, 0 0, 0, 0, 6, 16) re = 6 kee = 2

M 76 (0, ,0, ,0, 7, 5) r. 6s= 4 k,=15

, - (0, 0, 0, 0, 0, 8, 3) r86 4 kS6 = 9

M96 (0, 0, 0, 0 0, 9, 1) rg,= 4 k,-6 3

Mlo, 6= (0, 0,0, 0, 0, 10, 13) r 10,6 = 7 k,06 16

SM,8=(0, 0, 0, 0,0, 1, 11) r1 ,S 7 k, 16 10
M12,8 = (0, 0, 0,0, 0, 12,9) r, 2 ,6= 7 k,2= 4

.M13, = (0, 0, 0, 0, 0, 13, 21) r 3 ,6= 10 ks 17

* M 4,6= (0, 0, 0,0,0, 14, 19) r,,6= 10 k,,a I I

M 156 = (0, 0, 0, 0, 0, 15, 17) rts,8=O ks= 5

M1,6 = (0, 0, 0,0,0, 16,6) r1e.6 = 8 kIS= 18

Mt7.= (0, 0,0,0, 0, 17,4) r,7.6= 8 k,76- 12

Msg,= (0, 0,, 0, 0, 18, 2) r,&e= 8 kt= 6

Page 251.

Th9 expanded system cf fcundations lat us select in thA form

Pt= 5 , P2=7, ps 1, pt=13, p= 17, p= 19, pr= 23 , Ps= 3 1,
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with rineq P=p?=,1152646495 (its Param-iter3 thry are given cn pa j% 2p )

Vlues X takp th. follcwing valu-s:

ks~%=24, 12--26, Xs---2, X,-26; X5=10, XS 1, 17=20.

Ex-ii le. T: fird the qxnanded rsprs-s.:ntation of th . -.umbucr

A= 3. 3. .,, s, ,. J, j.

Let us compute th:. trace cf number A in th, basic system

SA.-( 12+6+ 2 1+20+-4-8) (mod23)=22.

In this caso o:urr.d two trar.sit ions/junctions on four.datin=3 p,

whence XA= 2. L-it us design nunr,*r MA (3. 3.3.3.3.3, 22), waosi- rant ct (S 3 )

is equal to
P MAM 5+3+7-4-5-3+3-2x5= 16.

L.-t us pres~nt number M, in the expanded range, for which l.t

us compute the value cf t~e generalized sum of the numerals

CA - 7 2 ---- 6--78- 30- ,1 - 440=24 31-

Whence

- 16 7 7 (mod 3)

or =22.

Thus, is obtained tho expanded representation of the numoer

A'=(3. 3, 3, 3. 3, 3. 22. 22.).

In order to switch over to the number, which has on foundation u, th4

numeral, aqual to 3, it is necessary to adjoin the followin.t mi-imu-u-

pseudo-crthogcnal number cf expanded range

M =(0, 0, 0, 0, 0. 0, 4, 13).
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which has multiplizity k,7=20.

Page 252.

Sr this case will bs obtainsd -uimter A( =(3, 3, 3, 3, 3, 3, 3, 4).

Here we clashsa with the indefirnte situation, sinc%

k47 > PI-.-)

i.e., .ithar number A1 =(3, 3, 3, . 3, 3, 3, U) lies/rests at ta:

first intarval and i's the unkncwr proper number, or it li-s/rests it

the second interval, and tho unkncwn proper number is A2=(3, 3, 3, 3,

3, 3, 3, 3). In this case, is exafwined the alternative set of

foundations, which includas the fcundations, which correspord tc all

possible errors.

Let the now following arithwetic operaticn be the multiplicaticn

by the proper number B=(3, 1, 1, C, 11, 15, 8, 1): (3, 3, 3, 3, 3, 3,

3, 3) *(3, 1, 1, 0, 11, 15, 8, 1)=(4, 3, 3, 0, 16, 7, 1, 3). We

examine the obtained prcduct (A=(4, 3. 3, 0, 16, 7, 1) in the bisic

system.

We find its trace

SA =(1346 21 9-5) (mod 23)=8,
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in this case n., 2

We construct number m,=( 4 , 3, 3, 0, 16, 7, 8) and compute its

rank
r. =6-L3+74-17+4-2x 10=27.

W: compute the gsnaralize-d sum of the numerals

(A--6 + 78 + 6 -' 60+77- 160= 19X 31-12

and we tranislate number MA intc the expanded system

.+ +27 = 12

or
an = 16,I

i.e., obtain number A'=(4, 3, 3, C, 16, 7, 8, 16).

In order oa foundaticn for P7 obtaining numeral cr-I,~

necessary to number A* tc adjcir~ a crinimum pseudo-orthogonal niaibs:

of expanded system

(0,0, 0, 0,0, 0,16, 18)

of multiplicity k,6.,=11.

As a result we will cbtain rumber A(z)=(4, 3, 3, 0# 16, 7, 1,

3) . Since the condition

h1 817< P7 -(n--- 1)

is satisfied, then it is possible to claim that number A(2 is p ropar.

and th~r~forp, is also proper th.e initial numtber A=(3, 3, 3, 3, 3, 3,
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3, 3,).

§5.5. Method of reflection onto the end/lead of the range.

In this method fcr numbrer A=(a, , ., X) it is necqssary t:)

find such value X=+t, at whict A will be a, proper numbpr.

Page 253.

Let us multiply number A by cprtain factor q so as as ar~1

to obtain a noncritical number. But since value of the X initial

number is unknown, then it is necessary to examine the prccess of

multiplication by the value, multipleq Pm+i, in order to obtain ir. th=

product numeral on foundation Pn+i' identically equal to zero.

Hence, if we designate

q -:*v ,,

where v - whole non-negative ruither, then factor vit is

expedient to choose as the prcduct of the numter of reasons fc: thl

purpose of the decrease of the size of the zone of

uncertainty/ind!?terminanc y.

But the~n factor q can prove to be sufficiently high value and in

the process cf multiplicaticn will occur the transitions/junctiorns
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through the numerical range P.

The number of transitions/unctions with the multiplication car

be evaluated on the basis of the following theorem.

Th--orzm 5. . 1f ir the stardardiz-d/noruiaal-zed sys+ m f

foundations P , P .. . PnP t is assicned number .= . .,,. ,,-) di h

trace SA and character A., and if with the multiplicatior rf this

number by the factor

q = vp. ,

wher v - whole non-negative nuuber, we obtain the product with

trace Sup and character Sup. then th o. number of trarsitions/junctior.s

through the numarizal rirge F will be determined by the

relationship/ratio

q qO= q'& -LU + VaM+ - . yiT-1,. - E 1 _-.,I_ (5.42)

' Proof. Let us present the multiplication of number A by factor , ,

as q of the additioTs of very ir itself number A. For each a&.ditizn

let us write out the criterion cf the overfilling
ti

9 -t= AA - - 4- T2, t .)'2 .1 A

q- . . . . . . . . .)A .. . ,1 qI . . . ... . . .q-*

After fcrming tie lvft and right sides 3f these expressicns, w, w411

obtain
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q q'Q11, I-=-q'%.A - qA"I  _  -~ -" %- %.II- _ '- I

Page 254.

Taking into account that AqA=-Ap and

V 'li-i, I = Van+t,
tt2

we will obtain that a number of transitions/junctions 12 through the

range is detarminal in accordance with confirmation (5.4i2) cf

t hoorem.

Expression (5.42) can be simplified on the basis of the

following theorem, which escaFe/ensues lirtctly from th-

determination of the concept of the trace of a number.

Theorem 5.10. If in the system with foundations j , P:, P, rni

are ass-gned two numbers A, and A2 with traces 5, and Sz r-sroctiv,!y

and th.sir sup A3 with trace S3 , th..u occurs the following

relationship/ratio:

S3  2,- 62 .-Y2,P,.= S -- S2 - ,Pn+. (5.43)

Corollary 1. With the additicn of number A whose trace SA, vY-rv

with themselves q of times occur the following equality:

qq q
I (S. ) (5.4

A- Pnt (.44)-2

61
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Actually/re-ally, let us d-esignate tb. tcace of number (i-1) A throuai

Si, in accordanza with (5.43) we will obtain

S1 + 8i-1, I - Y1-1, IP.+t = SL-1 + SA - ML-iV

S'irparizin- this Pxpr-.,ssicn ciin i with i= 2, 3, q. , wp will1

o bt air.
q qq

Pn~, I-tt Pn+1  i =sup + j qSA.
i=2 1-2

4, whence it follcws (5.44).

Corollary 2. In expressic. (. 44) left s ide is integrai, t, at

a ea ns t-he expression.

q

i- 2

on ths basis (5.44) the number of transitions/]ur.cticrs -thr_-ug.

the rana;e with the m, 't-i~licatici c,1 number A by q will be iefinsl as

q
Q q41A -flP Lvt2n~ - SA --- + 1 -1.1) (5,45)

Page 255.

For the tr!Lnsf crinaticn of the cbtainpd expr,?ssicn :,ntc th.2 mor-
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convenient for the realization let us consider some proper-:1_Js :f

minimum pscudo-orthogoral numhbers.

A minimum pseudo-orthogonal number with nuiera. a1 on

founiation pi ta-,s the form

j~(,0 ~ 0 ,~) (5.46)

Since i2. nuuinar Mgiall numerals zero, except numprals ca

foundations Pj and Pnm-i' it must be ifultiplea tc value

PjPn+t Pj

Let us consider numerical seauencq

Pj' Pj' Pi P

it is pcssibli to claim that the numerical sequsencq in q'iasticn

is the complete set of minimnum Fseudo-orthogoral numb-irs on

jfoundation Pi, in othrer words, in it ar:e represtented all valuos

r Actually/r~ally, if cm foundation Pj numbqr -:E has a

r emainder,/residue

then the remaining members of sequence 3n foundation pj have? valies

2a' (mod pj), 3a' (mod pi), (P., p- 1) (mod p.,), 0 (mod PJ).

Moreover any twc numb-irs of this sleque nce are not corgrurnt

between themselves -Jr. mcdulus/nmcdule Pi. Let us prove this rosi'-ior

from the opposite.
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Let us assume that some twc numbers of this sr-quence cf

multiplicity m and n are congruent with each cther in modulus/modul=

pj, there obtains

.ma' (mod pj) na' (mod pj),

or

(m - n) c' 0 (rood p j),

(m - n) a = vpj,

where v -whclg non-negativs number.

Page 256.

But latter/last equality cannot oczur, since according to thl

condit iocn

re<p.,, n<pj, a'<p,

and ncne, of these numbers has ccmmon divisors with Pj. Thus, any twc

numbers of sequence (5.47) are inccmparable on modulus/module Pj.

These numbers in all Pj and pcssiole values aj also pp

Hence numerical

sequen-e (5.47) is the_ complete ss.t of mini-mum pseudo-orthcgonal

numbers on founiation pj.
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As can easily be seen, th proved positicn is correct for t hn

sequence, which begins frcm mmher kj .

Theorem 5.11. if in the system cf foundations o, Pz, ...

Pn. P, is assjia-d '- miimumn pseudo-orthogonai number

,WVI~ j = (0. 0 ... 0. j. 0, , S )

of multiplicity k~xf, then a quantity of incorrect pairs which forms

numeral aj with numerals 0, 1, 2, ... , P-I, is equal tc the

multiplicity of minimum Fseudo-crthcgonl number .1aj

Pj- 1

, k .j. (5.48)

Proof. Actual!y/re ally, In the complete sot of Minimum

pseudo-orthogonal numbcrrs on fcundaticn pj are numbers of all

possibls multiplicities cf valut -7- namely

0, 1,2,. p-.

Let us take an irbitrary number of this set/dialing of mul.tipicity

kojj

,l8 ij = (0, 0. 0, j, 0. . .... 0, S ).

Storing/adding up initial number ,f 1 with numoer M1 y. ws wll!

obtain

A . (0, 0, .. . U, (' - P) lod pj), 0.. S )

( k, ~ k8 ~
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w her .

S! (S* - S ;) (mood P,,'i).

Page 257.

If

'k,,. j +, kpj> p j,

then Mj >3,

i.e_., tha sum of such numbers is an incorrect number, and th .~or ,
4,

(zj and Pj compose inccrrcct rair. If

k, j ' kojj < pj,

then

i.e.
S S*1 S * (niod p,,-,)

and numerals aj and Aj compose ccrrect pair.

In other words, numeral aj ccmposes with the numeral of any

number of the su.t/dialing of mir.i mum pseudo-orthogonal numbers cn

modulus/module Pj incorrect pair in that and only in such a casi,

when the sum of their multiplicities is not less than the value of

foundation Pi. But kzjj satisfies this conditicn only with thcs:.

numbers of the zomplete set whcse multiplicities are

p j . j , p j j- k a , j -1 . ..p i -2 , p j - -1 ,
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and such nrumb=. in all k. j.

By this is provan ccnfirmaticn (5.48) of theorAm.

Theorlqm 5.12. If in the system of the foundations

PI, P2  .... P , Pn+

with range P number A

A = m2 , j, n ,

it is multipliad by value g, where
~p

q "Pn.t ,Pj

then a number of incorrect pairs, formed on fcundation Ps&=/Pj, wi1 b .

defined as

k,, -Pj '(5.49)

where through kA is designated the multiplicity of a minimum

pseudo-crthogonal number with numeral ag on foundation Pm*

Page 258.

Proof. Considering the multiplication of number A by value q as

the ad-ition of number A very with itself q of times, on th- basis of

theorem (5.11) it is possible tc claim that k,2 , is also a quantity

of incorrect pairs which forms numeral a, with the set/dialing of

the numerals

0 , 1, 2 , 3 , 4 . ... p - 2 , p t,- 1.
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But such sets/dialing with the multiplication of number A by t

will be in all

vpi P

whence follows the confirmation of theorem.

Note. Into a quantity of irccrrect pairs must not =ntr piirs,

formable by digit of th? initial number A with the appropriate

numeral of product, since this pair in the addition does not

participate.

However, when p,#P. pj the corresponding numeral of product is

equal identical to zero, and with any zerc numeral is forme only

correct pair.

Corollary 1. The sum of inccrrect numerals 6p, j. fc-m-d or i'l

foundations PL, where p=1, 2, ... , n (;./j). is defined as

aj+ t -- + - (5.50)
IL. 

p  
Pj P I,.

Corollary 2. Expression (5.45) for the number of

transitions/junctions thrcugh the range with the multiplicaticn of

Pnumber A on v, can be represented in the form

= - AP + VM,.j - VSA +

+v P + I (SP + 6j), (5.51)
P , P, j

.J _ _ . . . ._ .., . _L . :L L .. .. _ = .. .. .. . . :.... . -
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whqr= through 6, iS marked a numbor of incorract pairs, formd on

foundation pj.

Crollary 3. A number of irccrrqct pairs 6, formed on

foundaticrs Pt. P2..P with thp ipultiplicaticn of number A by 'he

factor

vpn. i = P,

will be defined as
nI n

6 V pn P Z(5.52)

Page 259.

In this case expression fcr a quantity of overfillings takes th4 fForm

Q vpf,+.AA + vC,,+t - VSA + V _ ,,,, (5.53)
Pt

since with the multiplication by r wt obtain thr- product, squal to

zero, which has respectivIy S.p=O and A.p=O.

Somewhat more complicated matter proceeds with a number of

incorrect pairs on foundation Pj, since value

VPn+i = -

is not divided zomplctely into pj. L-t us dosignate whole part cf

division vpn+ into Pi throuqh q,, and the remainder/residul -

through q2 . Than

v* pn+l = qjpj + q2.
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Theorem 5.13. if in the system, calibrated on foundati4cns Pj

and pn+,, the number

is multiplied by value

p

then significant digit in the product in, foundation Pj coiricii~s

with thR same ia an initial number, and a number of incorrect o-airs

8on foiindation. pj with the n'ultiplizity of minimum

pseudo-crthcgonal number kzjg is determinred by the formula

8j = kjjqt,(5.54)

where

qli= I j1
Proof. Acarding to thecrem conditions has the place

p

Therefor % with tha multiplication of numeral 121 of an initial numh-:7r

on vp.+1 vq will obtain

mn - (qtpj + 1) aj (mnod pj) m aj(mod pj),

how is proven the first pcsitior cf theorem.

Page 260.

A quantity of incorrect fairs cn foundation pj will b-P 'Ifirs!
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as

since th% total quantity of components/terms/addends on foundatior

Pi is morp than multiple ka Fer unit, in other words, to a

quantity of incorrect pairs between an initial number and a nro"4act.

However, this incorrect pair in 6, be ccnsidered must no-,

since thq result of prcduct as the component/term/addend into tctel

sum does not Pnter, that also proves th? confirmation of th-o=:m.

Corollary. Exprqssion (5.51) taking into account (5. 54) accots

the form

0- = VP, x t- Ap + V .+i - VSA +

+vj + + ku,,qi).

Theaorem 5.14. If in the system, calibrated on foundations Pj

and Pn,, the numoer

A (g,, a2, . .a, an, (,,.,)

is multiplied by value

P

then the trace of product Sp ccincides with its minimum trac . %tnd ;.s

defined as
Sup' = S"p t k. jS" (mod p.+,), (5.56)

where k. - multiplicity of a minimum pseulo-crthogonal number w.th
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numaral aj or. foundation pj, ard S* - trace cf a minimum

ps.udc-orthcgcnal number with the numeral on foundation PJ cf the

single multiplizity

So= e (mod p.+,).
PJPn+t

Prcof. Or. thR basis of th'e provious theorem it is kncwr tht

significar: digit in the rrcuct in foundation Pi co;n.cid=s wi-t =

same in an init4.al number. Thr remaininj numerals of product a7-

equal to zerc. Since the mult.plication was produced to value

vPn+1 = 
P

Pagg 261.

Ther-fore, th- trace of product coincides with the trace of a

minimum oseudo-orthcgoral numter with numeral aj on toundation pj,

which acccrding to the ccndition hav a multiplicity k,,,. eu- -h n

correct relationship/ratic (5.56), which is the confirmation of

theorem.

Th.orem 5.15. In the system, calibrated on foundations Pi and

Pn+tOc:urs the celationship/ratio

qi = XPn+t + Pn*i -- Ss, (5.57)

where q, is detarmined frcm expression -=qpj -I; x - a whole

non-npgative number; S* - trace of a minimum Fseudo-orthogonal number

with the numpral on fcurdation Pi of single multiplicity.
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Proof. ValuiS i dstprmi ncd ty ?xpr~~ssion (5. 57), 10' 'is ):In

in the form

q,= xp,+i -. P

whers x - whole non-negative ru.rber, while P<P, +1. The n

or jni+Pi
pjp +I =_O0(mod p.,1 . (5.58)

uJnder the conditions of thecrem latter/l1ast ccmparison has unillie

solution.

L~t us writs axprscsion for tho miaimum Fs-udo-crthcgonal n-imb :,

From this expr~ssion it f cllcws that

P+- S"p, +L I a-P+
or

Pi ( i -S*)+ I =_0 (mod Pn"~) .

Then

it is tha solution' of ccmpariscn (5.58),which proves ccnfirmatior

(5.57) of theorsm.

Corollary 1. Value Su-Izjq car bp reprssentpd in the fcrn

Sup + kej,=xk~~ - ijPn+i - P"'i. (559

wherg I i~s the inteqjer Fart of th4 expressicfl
i,[P+ S~](.0
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Page 262.

Aztually/r ally, on the tasis (5.56) and (5.57) value S,,p+k.,jq,

can be repr&szrt d as

Sup + kcL jjq, = k~jjS" (mod P,+t) + xP±+ik. j + (P,+, - S*) k=jj

or, taking into accclint (5.60),
Sap + kajjq, = xk=, P+ + IjPn+i + k, IS* (mod p,+,) +

henco k ii (Pn+t - S*) (mod p,+,),

Sap + k jq = xkmjPn t + ljPn+t + P,,+i.

Corollary 2. On the basis of theor-ums presinted above,

expression (5.55) accepts the fcllcwing form:

VP,+AA - Aa, + Va,+t - VSA +

+VI +xkj+j + I

or

f V(P"+IAA + a,+t--SA) + V +lk, -I -A'p.= -+xk+ jklj± +

(5.61)

Let us find tnis value of digit a+,, with which number A

arranged/located in the first interval, i.e., it is correct. In th..s

case a maximum number of transiticns throujh range P is deter-nin by
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a numbkr of transitions with th multiplication of the grat--!t

number of first interval by multirli4r vpn+t, ramely:

i.e. value - cannot take the values, which exceed value v-I fir th-

numbers, arrdr-d/located in the first interval.

Furthar, if a number is arranged/located in the first interval,

then a, + , =SA an! thp character of initial number AA can take oniy

values of 0 and -1, moreover the situation when A, =-1, can 0c:ur, if

zero numerical range fall intc interval (SA -(n -2), SA).

Page 263.

L:O: us introduce the oarameter 9, defined as

I, aH a ,V=0 (5.62)

Key: (1). if.

then

a= I A- I. (5.63)

Actually/rsally, if aj=O, the product consists of some zero ligits

for which Afp=O. and thsn 9=1.

But if a,?#O, thr. the trace cf the product

L.. ..
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Snp =# 0,

and since 1 igit cn basis/basa Pm.- in t : product is ice.tica1v 4.j-1 1

to zero, then ragarding tle character wc obtain

ARI 0 .

Thec or~m 5.1r. (a the criterion of tne cor:rct.ss a - ,

If in the syst~m, calibrate, cn bas s/has P.,.,. n i c r

with trace SA and zharacter AA, then the criterion of th ccr-:. -

of the oreset number is pres.t is satisfac-.t.on of tne coi:.

P,+tA +- a #1- SA -T- t = 0, (5.64)

where t - whcla non-z~gative r.umter, dete.rzined frcm tna ccr.~±ig

v + xk,,j 1j-0= tv- -r np = V5.-65)

Key: (1). with.

or frcm the conlition

Key: (1) . with.

where r - the whole non-negative number

r< v.
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Plrco:-. Af'A: irtroducing t4!sjigna!izns in acccrdancri wi~h (5.65)

or (5.66), w e can (5.53) and (5.61) =egist-4r in the form

9 V (PTI+IAA + M..i - SA + 0)r

Pale 264L.

sUv: va1'it -, can.'.rt cxce-I valli- v-,' Wrr.nce fcllcws th,% asszrt.c: 'If

t heor em.

Corollary 1. The ur.Rnown value of Iigit with which iu-nb-?r A

is corract, is itairmined by tHq fcrmula

an1= (SA 1 (mod P.+I). (5.67)

ACtU.ly/rzally, if SA-t-.?o, rz frcm (5.64) it follows th~mt

PF&$ AA -4 M+ > 0.

Pnw > an4j 0.

that thi-s case zar navp- placp only lir.'1r conlition ,O.flt=At

which satisf ias (5. 6~7) . Rut i44t S,-t<0. lt ?nhherce, since arm+ 1>O.

can occur only case -IA= d L,= Pt --SAt i .e. (5.6,7) is c:)rrec:

in this case.

corollary 2. on. th,% baEsiS of th- aforesai1, we obtain h

followin3 Jeteriinaticn ot the va Iua of th character of th- 4initia

number A:
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L,)

'A V, ecili ')A --t > 0, (.8
1, cH S - t < O.(5.68)

K y (1) f. ";=

Lat us consider the determination of value t with the

u itiplicati cn :n q=vp,+,-P. Ir t his case ex pDrss on (5.66) can ?

r, prms4nt--d in the for |

tv r =k, 2--- - ' ... - k,, (5.69)
Pt P PMt

where 7=1- ., which is e-juivalert to transition from th= syst -.

of bases/bases P1. Pz .. Pn, Pn.t aith rar.gq P= j PI =Pn+18 , _ c th

abbreviatzid/rsducid systerr of tases/basas Pt, P2 .... pn with rmnj

Page 265.

Villiu t in this system is ncthing lse but a number cf

transitions through the range of systc.m with the addition of th

members of ths right side of expression (5.69), and ki - whole

non-negative numbers, which satisfy the expression

k/a. (mod p1 ) =a,

i=1, 2,..., n,
where at - digit of the number being investigated on oasis/bass. Pi.

and
at =c - (mod pt). s thiPipft I~

or, which is th-i sam'e thing,
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%i Xopi + ai, (5.70)

where? x 1 - wholt? non-negative num ter.

If we thr:ukh mi designate the weights of orthogonal bases i!.

the abb=,:viatz1./duc1.d system cf bases/bases, then occurs t

:.qualit y
V

Mi - = 2iP _ ,
P1

wher n - whol:? non-negative numbers.

4

Af ter multiplying tcth parts cf this --quality on a,
V

CC , - = x2iccp, +m' a
Pi

and after comparing with (5.70), we. will obtain

ki =_ aimi (mod Pi),

whence

or

ki a=~imi Triv,

whe re

Now expr-ssion (5. 69) car te rGnr santed in the form

tv 4 =- rV. (5. I)

An initial numoar in the abbreviated/reduced system takas fc:m

p =(a, t, ... a,). Let us ,esignate its trace th rough S'. Th- ran C :

. I lu m w, - .. .. . ... .. r , .._ . __.j
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number A' usually is accura-ly unknown, since during the comn:S4 =

of number A' from the minimum pseudo-crthogonal components couli

occur unfixed overflow.

Page 266.

But is always known the true rank cf num ber (at. a .'.. a-,S si c

during engineering of this number of the. minimum numbers could not

have places one disregarded transition for the range.

Lat us designate the true rank of this number through rHCT.

Then

n-

(aI, a, ... , a,-t, SX) = +m "p + S.,m,-- - rSCTv.
i= I

Whence

n-I
VVaX m 2= . - (a , ,., . S) + rCTV m,, "*,

t-- IPn

and, after substituting this expression in (5.71), we will obtiin

tv r = (at, .. a. ,, S.4) + r,,v-

• V 'V

oSrM, + anmn v v ri

or
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Pn
n

±v (rjjc?- I ri + [22 -SA])n

whence, if (7nS , follcws that

W h,?n a,,> s: ar- poss4ib1- t'o c~soes:

a) tec.1IH (a,, a2, e S)m mo .

X-L<v, TO I~rmc?-I rj+ [ n

cc.ii . ... :tL, ~) :((a" - S ) m,2 (mud n A

X-)V, TO t 1 ±;c - + f~'" Mn. +1.

Key: (1). if. (2). then.

Page 267.

when a,<S4 ara also oOESible tWC cases:

a)4Vc.IH*(as, 06-1 a.., S ) > ((S -an) Mn) (Mod Pon)

KqY: (1). if.

then

tirNjcT-~ r1 + [ n rPSAm.]

6eCrn4 (a,, a,,~ an-, S )<(SA -a,.) M0) (modpN) Z
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Key: (1). if.

then

trmc?-Yr,+ L, SflASM

Thus, is u:ovd the follcwinc theorem.

Theorem 5.17. If in the standardized/norwalized system of the

* ~'bases/bases
': ~Pl, P2,... Pn, Pn+t

.4

is preset number A with trace SA and with digits at, a2., a, on

bases/bases Pj, P2, .. , Pn respectively, then digit q& ,, with which

number A is correct, is defined frcm the condition

+t 1 (SA-rMc± + - [ . ]+ A,)(mod p,)
PB'

(5.72)

where r,, - true rank of number MA'; SA - the trace of number V

MA,"= (at, ab ... -, S ) and
[-,-, ]

Pu

in the abbreviated/reduced system of bases/bases P1, P2, .... P, c:f rnk

a, is defined is
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1, ecH ripH al, < S'4 iMeeT MeCTO

(all a .... 9 a-1, S ) < ((S - a) M) x

Q PT'
At= ecqni cc x>S., HMeeT mecTo (5.73)

x (mod p) >v,0 =, = = , . . .) , , SP)+ ( = ~ n )

.1 0 . DB lCTaA ,h rX cjryqaxx.

Key: (1). if with. (2). has place. (3). in remaining cases.

4. Page 268.

Note. Since MA, - number, comprised by addition (n-i) of

minimum psoudo-ortncgonal numbers, then occurs the follow.rq

limitation to its value:

MA',= (all a , a.-,, ,S ) < (/-- l)

Pn

This limitation in the majority of the cases allows on (5.73) tc

accurately determine value of A,. Hcwever, are possible the criticil

cases, when an+, is determined with an accuracy to unity, if an<Sa

and in this case

(S - a,) m. (mod p.) <n - 1,

or if an>S an, in this case

(an - S ) m. (mod p) > P,, - (n -)

Lit us illustrate, based on examplps, the datermination cf th.e

minimum trace of a numbher by methcd of the multiplication of an
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initial number tco value F. Lit us consil.er the :ffrence systq. of

numeration with bases/basis pl=5 ; F2=7; p3=11; P0= 1 3 ; p5=1 7 ; p= 1 9 :

p7=23; p,=31, with range P=1 152 646 495 and crthogonal bases with

their wFiqhts
Bt=922 117 196 n1 =4;
B2 =987 982 710 m2=6:
B3 = 104 786 045 m 3 = 1;
Bj=975 316 265 mn=l1;
B5 =-406 816 410 5= 6;
Ba=424 659 235 Is =7
B7=751 725 975 mny = 15;
B-= 37 182 145 mg3=1

4 L t us ccmuut_ ninimum pseudc-crthogcnal numbers wfth their

multi Flicities.

On basis/bass p,=5:

M =( 0, O,0 , 0, 0, ,7) kit=4
M 21= (2, 0, 0, 0, 0, o, o, 13) kt=.3
M31 = (3, 0, 0, 0, 0, 0, 0, 19) k3=2
,!, =-(4, 0, 0, 0, 0, 0, 0, 25) it 1

On basis/bise p2= 7

-M12 =(0, 1, 0, 0 0, 0, 0, 5) k12=4
M22 -(0, 2,0, 0,0,0,0,9) k22 = I
M3=(0, 3, 0, 0, 0, 0, 14) k2=5

MA2=(0, 4, 0, 0, 0, 0, 0, 18) k4=2

M52A(0 5, 0, 0, 0, 0, 0, 23) *52 = 6
'"6 (0, 6, 0, 0. 0, 0, 0, 27) h4= 3

Page 269.

On basis/bisp p3= 1 1:
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, 3U-- , U, I, U, U, U, 0, 29) k13 =9

M -= (0, 0, 2. 0, 0 , 0 , u, 26) It, =7

M433 = (0. 0, 3, 0, 0, 0, (). 23) k33= 5

A143 =(0, 0, 4, 0 0, 0, 0. 20) k.3 3

M53 = (0, 0, 5, 0, 0, 0, 0, 17) k3- I

=6 3  (0, 0, 6, 0, 0, 0, 0, 15) k63 - U

M7 .=(0, 0, 7,0, 0., 0O,121 k- - ,

-M83 =(0, 0, 8, 0, 0, (.0 , 9) k,

W93 =(0, 0. 9, 0, 0. 0. 0. 61 4.:. 1

M10 , 3 = (0, 0. 10, 0, 0, U. .- 3) k .,

On basis/base p4=1 3 :

M 4=(0, 0, 0, 1, ,0, 0, 5) k- 3

M24=(0, 0, 0, 2, 0, 0, 0, 10) k. 4 =6

M 3 4 =(0, 0, 0,3, O, O, O. 15) k,4 =9

M 44 =(0, 0, 0. 4, 0. 0, 0, 20) k,= 12
M54 =(0, 0, 0, 5, 0, 0, U, 24) k= 2
M6,=(0, 0, 0, 6, 0, 0, O, 29) k64=5
M7 ,= (0, 0, 0, 7, 0, 0, 0, 3) k74 =8

M84 = (0, 0, 0, 8,0 , 0, 0, 8) h8 = I I

M94 =(0, 0, 0, 9, 0, 0, 0, 12) k94 = 1
M, --= (0, 0, 0, 10,0,0,0, 17) klo. ,=4
M 1,4=(0, 0,0, 11,0,0,0, 22) kll,,=7

M 12. I-0, 0,,0 12,0,0,0, 27) k12 . 4 = 10

On basis/basc ps=1,7:

M15 =(0, 0, 00, 1,0. 0, 21) kis = 16
M= (0. 0, 0,0, 2, 0, 0, 10) k25 = 15
M3-=(0, 0, 0. 0, 3, 0, 0, 30) k5 = 14

Mo=(, 0, 0, 0, 4,0 , 0, 19) kz =13
M55 =(0, 0, 0, 0, 5. o., R) k, - 12

M6 = (0, 0, 0, 0, 6, 0, 0, 28) ks = I 1
M75 = (0, 0, 0, 0, 7, 0, 0, 17) k75 10

A185 = (0, 0. 0, 0, 8, 0. 0, 6)
,W95 =(0. 0, 0, 0, 9, 0, 0, 26) k 9 8

,mio, 5=(0, 0, 0 0, 10, 0, 0, 15) k10, 5 =7
Mi.s=(0, 0, 00, 11, 0, 0, 4) k1l, 5 =6
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" =0, 0, 0, 12, 0, 0, 24) k1 2,1 =5
,13,5=(0, 0,0,0, 13, 0, 0, 13) k1 , s=4
M,4,.= (0, 0. 0, 0, 14, 0, 0, 2) k14,5 =3

*I, -(0, 0,0.0, 15, '2, 22" k" , -2
MIS. 5=(O, 0, 0, 0. 16,0,0, 11) klse=

4,

Page 270.

On basis/base p6= 1 9 :

M18 = (0, 0, 0, 0, 0, 1, 0, 20) k16=8
,s= (0, 0, 0, 0, 0.2, 0, 9) ks = 16
.1j = (0, 0, 0, 0, 0, 3, 0. 28) k/ = 5

.8 -(0, 0, 0, 0, 0, 4, 0. 17) k 6 = 13
f,%= (0, 0,0, 0, 0, 5, 0, 5) k5=2
Ms = (0, 0, 0, 0, 6, 0, 25) k/= 10
M78 = (0, 0, 0, 0, 0, 7, 0, 14) k76  18
ae = (0, 0, 0, 0, 0, 8, 0, 2) k86 = 7
Mg= (0, 0, 0, 0, 0, 9, 0, 22) kw=15

Mto, a = (0, 0, 0. 0, 0, 10, 0, 10) kl. S =4
A 1, a =(0, 0, 0, 0,0, 11, 0, 30) kli,6= 12
,Mf2, 6-=-(0, 0, 0, 0, 0, 12, 0, 18) k12, -=-I
M13,8=(0, 0, 0, 0, 0, 13, 0, 7) ktI&S,=9
M -,,-(0, 0,,0.. 14,0,277) k, 8 =17

Mm e= (0, 0, 0, 0, 0, 15, 0, 15) k1 , a=f6
MIS, e= (0, 0, 0,, 0, 16, 0, 4) k16, a= 14
M , -=(0, 0, 0, 0, 0, 17, , 23) k, 6 = 3
MIS, 6 - (0, 0, 0, 0. 0, 18, 0, 12) ktjs, a= lIl



DOC R 1023913 P '. G

On basis/baso 9. =23:

Ml7 = (0, 0, ,0,,01, I 11) kf 7 = 5
MV = (0, 0, 0, 0, 0, 0, 2, 22) k27 =10
M37 = (0, 0,0, 0, O, ,3, 2) km=15

,11 7 = (0, 0, 0, 0. 0, U, 4, 13) k, 7 -20

M57 = (0, 0, 0, 0, 0, 0, 5, 23) k7 = 2

M67 = (0, 0, 0O , 0 , 6, 3) kg7r= 7
-- =(0, O. 0, 0, ), 0, 79 14) k-, = 12

M87=(0, 0, 0, 0, 0, 0, 8, 25) kS7= 17

M0= (0, 0, 0, 0, , 0, 9, 5) k, 7 = 22

M10 , 7 =(0, 0, 0, 0, 0, 0, 10, 15) k10, 7 =4

M11,7 = (0, 0, 0, 0, 0, 0, II, 26) k1l, 7 =9

MI.- 7 = (0, 0,0,0,0.0, 12, 6) k 1 2. 7=14

M, 7 = (0, 0, 0, 0, 0, 0, 13, 17) k13,7= 19
" . . -(0, 0, 0, 0, 0, 0, 14, 27) i I,

0, ( , , 0, 0, 0 . 0. 15, 7) k l, 7  =6

MIS, 7 = (0, 0 0, 0, 0, 0, 16, 18) k 8,.= II

M17 , 7 = (0, 0, 0, 0, 0, 0,17, 29) k1 7,--16

M, 8, 7 =(0, 0, 00, 00, 18, 9) k1 8, 7=21
Mfg, 7 = (0, 0, 0, 0,0, 0, 19, 19) k19, 7 =3

M1.0 , 7 = (0, 0, 0, 0, 0, 0, 20, 30) k/2o, -,= 8
A12 1,.- =(0,0 u, v, U, 0, 21, 10) k2 1, 7 =13

'" 22 , 7 = (0, 0, 0, 0, 0, 0, 22, 21) k22, 7 = 18

Page 271.

The parameters of the abbreviated/reduced system of the

bases/bas ss:

p:=5, 7 pp27 l, p4=13, ps=17, Ps= 19 , p- 23 ,

vere given during the illustration of method thA expansions of rang=.

Example. To find the minimum trace of the number

A = (1, 5, 10, 1, 2,8,, ,1, )

Wi computl . th ,race
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S,=(7J-23-3+-5-r-10 
2 -- ll) (mod 31) =30.

In the abbreviated/reduced systom wt computs thi trace of nut-_ A'

S =(+ I0+13+22+19+3) (mod 23)=22

and its true rink r -=1-' 5-!-11+5- 6-' 4=32-1n=22. We compute tho calculat-d I
rank

n

2, ri=
2+8+1 +3=14

and value
22-14

"'Then the value of the minimum trace of a number is determin-l on

(5. 72)

an+=30-22+ 14+4+AJ =26+A.

Hqrs orcurs the inrquality

(s -an) Mn(modP V. 13 - L > (n - 1)-2
Pn pM Pn

whence A,=1 and n+=S*=27. Actually/really, the number

.4=(1, 5, 10, 1, 2, 8. 1. 27) - 2' "'1

is correct.

Example. TD find the minimum tracn of the number

A= (0, 3, 10, 12, 11, 14, S. c,,+ j).

Page 272.

Lat us compute thp trac0

S,=(14+3+27+4+27-, 23) (mod 31)=5

is -
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and trace S' of rumber A'

S =(6+ 13+ 15+3+19) (mod 23)= 10,

true rark of which
rxc7 ---3+ll +6+11 +10-2.531,

and the calculatsd rank

r 1-= ,-8+2-j- 10-- 1 =27.
i= I

we fini

on (5.72) we determine the value cf the minimum trace of ruMb .r A

.~a+t=5-31 +27+ 'I +Ai=2+4i

Here

Ani Pn

i.e. valu1 of A, car have oen of two values: 0 or 1, whence the

minimum trace of a number can Jt can have one of two values n+1= 2 or

n+I= 3 , i.,*. it occurs the critical case.

§5.6. Critical casps.

Both luring the use cf a method of expanding the rangs anr.

during the use of a methcd of reflection onto the end cf thc -'n? in

the standardizei/normalized system of bases/bases take th- clace th_2

indefinitp situations when we use with the number
A = (at,, ..... Mn a , ),

about which accuratly unkncwn, it lies/rests at first intr-v;l

L ._i . ... . - -.. ... . :-
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[0, 0) or the secondl1y [01, 231).

L~t T(A) -pari-ty of numtirr A, dqf4.ned as

1f" eCJIH qHCAno A HeqeTHoe,
0,ecinqcao A MeTHCe.

Key: (1) *if a number. (2) . Ti 3.even.

Ltus consider number 4 h2. e ~r e

13, I2~ (mnod Pn1)

4Number A0 -can belocated either in first interval 10, 81, if:

number A was 1bcatad in the seccnd intorval or in latter/last

interval (p i-),Pn+tQI'), if numter A was located in the first

interval.

Page 27.3.

we form by formal division -,ntc twc number

where

Y, (mod'p,,

1, 2, n . ,

and let

I' , (Y 2, . Y'n Ynii)

-numb!er WhcsF -digi't Vn.f i.s obtain'?d by one Cf the describel -t:ov:-

methods of dI'mi.r~ h4 minimum tracez of a nuimbsr, mcr-ovsr is



illowei/issumei critical situv-ion, i.e., it can be foundl Ir ri-

the first two intervals cf nirrical range. Ther are pcssib!c tho

following cases.

Casa 1. Number .4, -,?van ar 8 ccrr.ct, a.. , !s locat-d in int:rv=-I

10, ST). )uo-ient fr:om the fcrmai iivisicei of i.;b-: Am into t.4c i ! ,

the number, also correct 4" vj of oartyA. A number - car.

regarding b'e found only in cnre cf the first two intervals of

- numerical range. Thrn a differ:r~ce 4n the numters G and will je

A0
Aft2=(..,,..... y. yy2,)-

(o, ,, .. ( , - rnod P.1 )-

i.e. if G - correct number, then

if G - number of the spcond interval of numerical range, th=. .

( - ) (mod pn., )

In general

(Y, ,- -L'-) (rood p,,.,)

Page 27u.

Case of 2. Number As odd V(A)- and correct. Formal quctiznt

Ap will be detarminre wh-rqas
2

AO Ap +(Ap)P - , ____ A + p(Ap ).
2 -2 2
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Since

AD + V (Ap) J"-<

that it is possible to claim that number -Lp is arrangd/locat in2

the interval

Hencs the number

where

- (Aa) P" _' )(op.,
it is correct, i.e., occurs the sarre situation, as in the first caz:= .

--hen

(Yms -t' + V (AD) -E±P . )mdp 1 1)I

Cise of 3. lumber AD is ever. rumbpr, arranged/located 4r the

latter/last interval. Then formal quctient falls into the i.t_-va!

22

Since number AD can be reFroserted as

Al l (p,,+ - i) 8 + MAD

where AAO<OP, that

AD p, 1 ~- &40

whence

(Yn+i ) (Mo~d p.+,) >

Page 275.

Case of 4. Numbor A5 is an odd and inccrrct number cf intcv?.

-. . . . .'';:: " -, .: = ,:, _, .. .. .. . , - -- = -- .. . .
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[(p,-I)81, pnit), and quotlent trcm the formal division of numbn-r A0

intc two will bi
A$ As + p+ 1 . (,,+- I). + AA3 +Pn+

2 2 2

wher: AAp<.g or

A0 -'-'-Ph+1o@ - -V -

5inc? O-AAO<, that it IZ p ossib. o clim that nu -m: A !
2

arragqdloctelin the latter/last int-rval,i.

As
(P-+ l ) < -2 < p,..,'

Then

•~~ V (As P ,-y,, -- - (.B) (rodP,____''
2 2

Summarizing, it is pssible tc forvulat = the criterion of tJ".

correctness of number AO as fcllcws: number As correct, if occurs the

condition

(Yn+ 1 ~+(As)~.) (mod ,+) 1. (5.74)

Thus, in tns critical casas we can use critericn (5.774) for

solving the alt-rnative., what numter is the urknown correct ninber A

or As.

Lat us considsr now somp thecrems, which connsect characteristics

(of type of rank, trace, charactsr, etc.) ofr rumbers G and A.

Theorem 5.18. If in the system of bases/bases PtP2,....P,. with

wqights of orthon;onal ases C tn, m2 . .M, is preset number

A'=(,,., an), tru- rank ef which r , and oarity *(A'), th4 -
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true rank of number r=(yi, 2 ... , of the obtained by formal

division number A' into to, will h7 defir=d as,( n
'Y m (a.) (,4'))m(S. 'it

whera p(a1) thnr& is a fucticr of thi parity of values a.

Proof. Lz-t us first j'mcnstrat-  ti- or' m on thi assurmrti.-nch :

number A' eve-n i.e. VP(A') 0.

Pago 276.

In this case upon th, dcubling formal particular G the transiti.-n

through the range cannot cccur, i.e.,

F+F=2F=A',

whence accordinj to the theorem abcut the rank of sum follows

rA = r

By this is orovid validity (5.75) for '.i the even A , Let ic *- .-,w

initial number A' odd, i..., 1(A')=I. Thn upon the doubling of for-a!

quotient occurs on_ transitior through the range i.e.

r+ F=2F=A' - V (A'),

whence

r, =r2rr n a,( )- (A').

Consequently (5.75) is correct for the the odd A'.

Theorem 5.19. If is Freset the system of bdses/bass P,p. ...
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tn" 0,, . ,n the °- -i1

with we ights cf crthcacnal bases of in, ino, m and the expaIn0

system of bases/bases P1, P2 ... ,. Pn, P,,, with weights of orthoona.

bases of i,, n2, ... , mn, m,+, is Xrcwn value aA' - the generalized sum of

the diqits of the number
A ' = ( ai, (Z2 . . .. ),

the value cr of the qan-ralizcd sum of thc digits of thf mbcr

r (V, Y2 . . ),

the obtain=d by formal divisicr number A' into two, will bt

determined from the condition

G r= -P,,+, __ (ai)-- mot~(sci)) . (3.76)

Proof. since according tc the condition a number 3 is obtained

by the formal iivision c¢f numbf- m A' into two, tnen for all i=I, 2,

n takes the place

Yi = 2i-pi a

Page 277.

Rgariirg the generalized sum of thf digits

i 2

which coincides with assertion (5.76) of theorem.

Corollary 1. If thp values of the gensralized sums cr t .i ,'its

of numbers A' and G ar -_ resented in the form
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-A = p×1 .t - q.A,

O- -2 t

where xi, xz, qA', qr - whole non-neaative nambars, moreover

qA, < Pn+,,

qr < Pn+.

then occurs the equality I (mod" (5 7 1
qr = V ( (M))(

i=t

Aztually/r:ally, ccnditicr ( .7S) car. De repr-sented in t.an :orm

2,x2pnt - 2 qr Xipft - qA' Pn+t _.' rn,' (T,) -

ifj

or
hn

2qr=pn++j(2 -x- , (ll))-q. m ,

Page 278.

Aft-4r introducing the designations:

× ~ ~ ~7 --2 --× -- M;V" (al),

q q=q..t, + MI I m,(00

t=I

we will obtain

2qr = Pn+tx3 + q.

Since pn+, - odd basis/base, ard on the left side of th-.

expr.ssion will cost even numtbr, then it is Fossible to claim that

values x3 and q have identical Farity. 7hea, if %3 and q - 'voa

values, takes the place
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X3  q

or

If X3 and 4 odd values, then has the place

X3-1 +Pn+ 14q

or
qr - q (ModP,4)

which coirncid-- with (5.77).

Theor~ 5. 20, T.0 in thcr ex~anded system cf the bases/bases

pig P29 *.. - n Pn+t

4s obtainied by thq oxparsicn cf range tha number

of oD.rity V(A1), then' for thr- number

w her r"(odp)

the valus- of di4it Yn' iwith vh-.ch a numoer G is corrgct., it is

determine d from the condition

rn,+n+it - nlp~ + (A') (mod (5.78
2 (mdp). (.8

Paqe 279.

.~.* -A&
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Proof. Thi value of digit Yn f of a number G in the expandm.

representation is defined as

MM+- y n (q+.1 _ rq A + i (A')) (mod p,+,),

whence and f-clows confirwatior (5.78) of the t'heorem,

Corollary. In the standardized/normalized system of bases/lasrs

condition (5.78) accepts thie form

-n+1 2 (mod Pn+). (5.79)

The criterion of thp corrsctn.ss cf number .48, taking into acccurt

(5.79) and
-~ I (mod p,,.,),

an example the form
(14± (A) + p(As) P"--) (mod p,+)< I (5.80)

can be formulated as follcws: if the parities of numbers A also A8

coincide, then correct is a number A. If the parity of numu--rs A also

A6 differant, then correct is numter As.

L.t us consider how can tc determined the parity of a ru.b'r A.

For forming the number of form MA=(,t1., ... ,a-t,S) storac/aidd

up the minimum numbers, which are the constants of system. Aft?r

designating through V(k) the function of the parity of the
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multiplicity of corrwspcnding ccmpon-nt/term/addend, it is Icssibl

to claim that the parity cf numter MA will be defined as

f--i

Further was conducted the expansion of number MA, but in this

case a number did not vary in t he value and, that mians did nct virv

its parity.

For forming the numbar A tc numbqr MA they adjoined ccnstant

Mo of parity lp(M). Since in this case the transition through the

rangq is impcssiDle, then the parity cf a number A will be dqfin:-d is

'(A)= ( V p(kjj) +,p (Mo,)) (mod 2). (5.81)

Page 280.

For determining the parity V(As) lpt us consider value
N'= (--Y.+i) (mod P.,,

which letprminas a number of intervals, which dividL the rumb-?r

f (y1,. ' y . .... Yn, Yn+t)

and

y, i!__. (mo d p .,)r'==2 (,,, '... . ti jp))

In this case are possible the following cases.

Case 1. If .V'<,R f - i  then upcn the doubling of a numbor ' does

not have a point of emergence fcr the range, but cbtained as a casul-

cf doubling number A over, i.e., 1p(Ao)=o.
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Case of 2. If V'*> , ther upon the doubling of a numbr ,r
2

takes place for the range, and therefore, obtained as a result Of

doubling number AD cdd, i.e., p(A 0)=I.

Cise cf 3. If ,V°= " ,1- 1 t her i accordance wit'.h the itao - a '2 '

about the parity of a number we have

V(A8)=(.(p,)-'P(SA.) V(X)) (mod2), (5.82)

where k - numbec of incorrect digits in number Ao.

Now can be fcrmulatee the third version cf the critericn of th

correctness of the number: if N'<P~t. , then correct is n-umbor A6. if
2

N'> Pn±+I then =orz:-ct is numbF.r P. If N' - rP ' - l than whre (A. )=1
2 '- 2

correct will be number A, and when V(A)-o correct will be ruiznr A4.

Let be preset the basic system cf the bases/basas:
P=5: P2 =-7; p3= 1: P=13; p5 =17; p6 =19; P7=23.

with range .f=37182145. parameters of which are given on page 249. As the

expanded system let us take

,=5. p1=:7p=1: D 4 =13; p5 =17: p=19; p-=23: p =31.

Range of this systM -F-1152646495. The parameters of this syst:m a _e

given on page 268.
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For the basic and expanded systems of value , acceot the

following values:

%j . - 2 ).2-626. 1U . ; . =i I. 7 =20.

Example. To Jatrrmine the number of the interval in which is

located the number
" 4 = I '. I. -1. '2. 16. i . 1. 9 .

Page 21.

Let us find first values m, ,, witb which the rumber

~~A= (0, 1. 4. 2, 16, 13. 2 1, ..

it is correct, i.q., it is arranged/located in the first -.- erval.

let us find tha trace of this numbr S, in the basic system

SA =(2-L8-;-21-9 -21) (mod 23) =15.

In this case cz:urred two transitions through basis/base p,=2 3 , i.

-TA = 2. Thus, iz the basic systn' it is possible to form thr 'u"br

.WA (0, I, 4. 2, 16. 1.3. 15).

rank of which is aqua! to

r '%[A - 5 - -17" - - 2 3 28.

Let us compute generalized sum of the digits cf a number A

o'A= 6+- 8- 52 - 160 - 143-- 31) - '3.31 -24.

Ccnseq uently

q= 24.

Then

a.+i =(24-28) (mod 31)= 27.
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We form tho expanded representaticn of number 11A

MA=(O, 1, 4, 2, 16, 13, 15, 27).

In order cn foundaticn for P7 obtaining digit a,=21, it is

necessary to the obtained number tc adjoin the number

3i= (0, 0. 0. 0, 0, 0. 6. 3)

of multiplicity k7=7.

Since has olace k7<P--l, then the cbtained sum

""A. .4= = (O V, 1 M7 1 4 ) ?1 "qn)

is the unknown correct number.

Actuall y/r call y
At =(0, 1, 4, 2, 16, 13, 21. 30)=15.106,

i.e. it lies/rests at the first interval of the expanded system. Aa

initial numbpr A is iccated in interval f10j. 11-).

Example. To determine the digit as, with which the numb-r

A, = (3, 3, 3, 3, 3, 3. 3)

will be correct in ths expanded range. Let us compute the trace of

number Al in the basic system

SA = (1 2- 6- 21-7-20 -- I -8) ( mod 23) = 22.

In this case cccurred two transiticrs through basis/base p,, i.p.,

we form number .l 4 :

.AI., -= ( . ., " i. 3, '2'2

lb. . . 3.
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rank of which

A

r,
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Page 282.

Let us determine the value of the generalized sum of the digits

eA = 72 +7 8 +6+78+30+33+440=24.31 -7,
we c ant =(7 - 16 ) (mod 31)=22.

Thus obtained the axpanded representation of a number MA

M A = (3, 3, 3, 3, 3, 3, 22, 22).

As constant M7 Lt must be selected

M7 (O, 0, 0, 0, 0, 0, 4, 13)

multiplicity k7=20. Here ccc. rs the critical situation

k7 > P7 -+I

i.e. that obtained of number A2=t1A'17=(3, 3, 3. 3v 3# 3, 3, 4)

lies/rests either at the first cr in the second interval. As can

easily be seen in this case.

va-

Then. V (A2) , (kg) (mod 2) =0.
4= i

Yn+t= 2.

Let us find

2 2-
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whence

N'= 15,

i.e. it occurs the case N,= Pni--l.
2

After using thb theorem about the parity of a number, we will

obtain.
* (Ap) = (V (3) + 1 (SAO) + V (k)) (mod 2).

Here V(3)=I. Let us find the values

• 4 (SAO )=0 -l 0- I -1 0 -0- -0) (mod?)=l,

*p (.) = (0+1 1 - 1 + 04-1) (mod 2) =O.

We obtain *(A5)=O. According to the third version of the criterion of

correctness we establish that a ccrrect number is a number.

.4 - (3, 3, 3, 3, 3, 3, 3, 3).

Is actual/real, A=3<P.

Page 283.

§5.7. on nonmolular operations.

The nonuodulLr operations include the operations, which carry

positional character, i.e., using with the value of entire number is

a whole, but not with its representations, undertaken according to

the independent foundations isolated/insulated. From this point of

view nonmodular operaticns relate to a number of positional

~. _ _ _ _ _ _ __L
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operations, i. 9. , most difficult cperations in the system of residual

classes.

Further difficulty creates the circumstance that the arithmetic

unit, which works in the residual classes, is qxpedient to realize in

the form of th- independent blocks, which work on the independent

foundations and those not virtually connected. Therefore the

algorithms of the execution of nonmodular operations must be

constructed on the basis of their realization in the nonpositional

arithmetic unit.

?he examinad in present chapter methods of numbering of the

interval in which is arranged/Iccated a number or, which is the same

thing, the methods of determining the minimum trace of a number, make

it possible to obtain the evaluation of the number being investigated

in its value with an accuracy to the value of interval, which, in

turn, makes it possible to find the efficient algorithms of the

execution of the majority of nonmcdular operations. Widely can be

used for the same purpose the traced in Chapter 3 criterion of

overflow for the addition of numbers.

Let to us be preset the regulated system of bases/bases

p,, p., p, whos numerical range g is decomposed on P intervals by

value
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As second computer zero let us select the point of numerical
range Pn+ L.+ The numbers, arranged/locited in sub-ranges 10, Pm2L),

2 p, 2

and [P-:L., _ P), wa will consider numbers of diffarent signs. Let us2 p.'

agree for the certainties of a nuvbar, which lis at sub-range

02 , I p or at the intervals with numbers 0, 1. 2 . to consider

it negative, and the numbers, which lie at sub-range [ P-2 or

at the intervals with numbers p 3'- 'si]e

Page 28(4.

But then a question about the determination of the sign of a

number is reduced to numbering of the interval in which is

arranged/located a number. Any cf the examined in present chapter

methods of determination of the number of the interval in which is

arrangsd/locatal a number, aut,.matically determines its sign, and

during the use of a method of the "valuation cf intervals the sign of

a number can be determined already in the stage of determination of

the type of tha criticality of a number, since first type critical

number is always located in the intervals to the left of O- and,

therefore, this number negative. On the contrary, seconi type

criticil number is located in the ranges, close to L. to the right of

ima
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O--. tis number positive.2

Let us comsider the now arithmetic comparison of two numbers.

Let be preset two numbers A and B is required to determine, which of

the numbers is 3ore. Let us determine by cne of the described above

methods of the number of the intervals in which are arranged/located

these numbers.

Let number A be is arranged/located in interval of jj, and

number B - in interval of j2. Then in the case of jt1 j2 the operation

of arithmetic comparison can be realized simply by the comparison of

the numbers of intervals, namely, if j1>J2 , then A>B, and if jl<j,

then A<B. Exception/elimination comprises case j=j2. Here for

dptermining the larger number it is necessary to determine number J-

of the interval in which is arranged/located difference A-B. If

0< i3< P  2 them difference is negative, and hence A<B. If

P+-<ij 3<p1.then difference positive and A>B.
2

And finally if A-B=O, then numbers A and B are identical with

respect to value and sign.

Monmodular operations include also the operation of the

translation of numbers of one numeration system into another, most

frequently of decimal or binary into the system of residual classes

I,[



DOC =81023914~ PAGE

and vice versa. The translation/conversion frcm any positional system

into the system of residual classes dces not represent work.

Let be is preset the representation of number A in the

positional numeration system in the form

•t-- anp" +a,, tp -1 4- •. .+acp" -- a,,p --a,,

wher p,. - basis of system, and value a, satisfies inequality

0 <a, <p, i 0, 1, 2. n.

Page 285.

Having a set of constants, represented in the residual classes and

corresponding to numbers 0, 1, 2. p", it is possible, by computing

consecutively/serially values ajp ' and storing/adding up them in the

arithmatic unit, which works in the system of residual classes, to

obtain the nonpositional representation of a number.

Just as simply is produced the translaticn/conversion from the

system of residual classes into the positional numeration system.

Let in the system of bases/bases P, P2. P., be is preset number

.A = (aaq2. .), which is the numerator of the proper fraction whose

denoainator i Is required number A to present in the form of correct
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binary fraction, namely:
A = 2-E, --2"2+ . .- - ,

The conversion indicated can be carried out by the following

sequence of operations.

First step/pitch. We compute sum of A+A=2A and simultaneously

compute the criterion of overflow Q-.. ,. whose value is high-order

digit of the binary notation of a number, i.e.

"" "O-2A-e i-

Jecnnd stap/pitch. we compute sum 2A+2A=4A. The value of the

criterion of overflow QA is the digit of the second after comma bit.

o.A = e2.

Repeating this process of s of times, w9 will obtain the binary

notation of number A in the form

A =2-1e,-! 2-"2- •• - - ,

where
i=, 2. s.

Ia this case can be easily written the routine of

translation/conversion, based on this method. rt in essence will

consist of the the consecutive of an addition-calculation of the

criteria of overflow and shifts/shears of the obtained digits of the

binary equivalent of this fraction.

Let us consider the now interrogatory method of obtaining the

II . . .. ... .. ..... ... "" -i I ll |/ I | I~ m .. ... , .. . . .. ' "..... '
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binary equivalent number.

Lat number A=( , 2. ) be the numerator of the proper fraction

whose lenominator lies/rests within the limits

2'< & < 21'-.

Page 286.

It is required to find the binary equivalent of number A. Let ,as

present equivalents in the residual classes of the binary values 2j

2' i(f4 j), 4 , .

j= 1,2 ..., t.

Lat us compute lifference in the residual classes.

A - 21 = A,.

Let us determin3 sign sign At value At. The inverse value sign Atwill

be binary high-order digit of the binary equivalent of a number

ej = sign At.

Further, from A, or from the restored/reduced with negative At

number A subtrahend is equivalent in the residual classes of binary

value 21-1. In this case we obtain value A,-,. The inverse value of sign

A,_, is the following digit of the binary equivalent of number A

82 = sign At -.

Analogously are determined the remaining digits of the binary

equivalent of an initial number. The procedure indicated can be

organized, also, without the restcration/reduction of negative



DOC =81023914 PAGE

remainler/residue. For this together with the equivalents in the

residual classes of values 2i by equivalents in the residual classes

of values 2j it is necessary to have equivalents of two's to

complements.

As the modification of this method let as consider the

translation/conversion into the binary-coded decimal system.

Let 3' lies/rests within limits 10'< 91< 0'. Let us take set

4J(s4'1) the constants, which are equivalents in the residual classes

* of the 7alues:

ci= 210',

C2 = 21. 10'.
C9= 2 3. 1 Oi,

i=0, 1, 2, .,s.

Page 287.

Subtrahend from A value C,. If difference is positive, then cu,

is determined the senior tetrad of binary equivalent, if difference

is negative, fron A is subtractedcz1 . If difference during this

subtraction is positive, then the digit of senior totrad is

determined, otherwise from A is subtracted cj, Even if In this case

the digit of senior tetrad is not determined, from A is subtracted

c,,. continuing further this process, ye obtain the binary-coded
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decimal equivalent of number A.

Let us consider now the algorithm of the rounding of number A:

A (a,, Z2 . CX),

to r of signifi:ant digits r<n.

In the positional system with basis/bise p number A will be

represented in the form
4.

A =8,p- + 8p '2+... +68=(6, 2.6,).

The rounding of number A to r of significant digits on basis/bass p

consists in the replacement of digits 6m, 6 m-, ....
6

,+ by zero. rn other

words the rounded-off to r digits number A will take in the

positional numeraticn system the following form:.

A o,, = ( 1, 6 , 8... 1, 0 , 0 . ..0 ) .

From an arithmetic point of view this rounding is subtraction from A

of the rounding off number a, where
a = (0 , 0 , . ., 0 , 8, , '8 + 2 . . ... 6 ).

When A is integer, the execution of the operation.of rounding is

finished with the procedure indicated.

But if A i3 fraction, by kA to this procedure is adjoined even

crossinq out of zeros, obtained in the and digits of a number.

Aritbmeti ally this crossing out is nothing else but the

division of a number on p"-'.
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Thus, the realization of the operation of rounding leads to the

following procedure:

1) is revealed/detected the rcunding off number a:

2) is revealed/detected difference A-a;

4 ~3) are divided A-a into p''

It is possible the process of rounling indicated to impleseat

consecutively/sarially, namely:

1) to det-armine the next digit 6j;

2) to subtract 8i from A;

3) to divile difference A -6f into p.

Page 288.

Analogously to act with the obtained result

consecutively/se3rially (n-r) of times.

LM"' _.'A
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Let us consilar now on the basis of the theory of ranks the

process of division into 10 in the absence in the composition of the

bases/bases of the dividers/denominators of number 10, i.e., in the

absence of zero values amcng the digits of the divider/denominator,

represented in the selected syste. of bases/bases. Then division can

be produced step-by-step. When dividend is multiple 10, result will

be exact quotient. Let us consider, which is result in the case, the

4 code dividend is not multiple 10.

Assume it is necessary to divide number A into 10 and let

A=1Os+t. Dale it is step-by-step A to 10, we will obtain

l Os + t - k$ t - kdo
a= 10 s- 10

Thus t-kP it shares by 10. If we take for sisplicity such

bases/bases that the last figure 91 would be equal to 1, then in this

case sum t~k=10 or t=10-k. As far as value is concerned k, then this

the difference in the ranks of a number 10a and actual dividend,

i.e., for obtaiming the latter/last decimal digit of actual dividend

should be computed the rank of preduct 10a. Thus, it is possible to

determine the vilua of the last figure of the decimal representation

A as follows:
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1) we divile step-by-step dividend by 10;

2) we compute the rank of quotient;

3) is computed rank 10a (but thereby we determine the last[figure of actual dividend).

Let us illustrate the given method of datermining the

latter/last decimal digit of dividend.

Lat us take numeration system with bases/bases pl--; F2= 7;

p3=11. The range of system will be defined as JD=3.7.II =231. By

orthogonal bases will be Bg=154, B2 =99, B3=210 , and their weights

respectively ml=2, m23, m-3=10.

Example. To find the latter/last decimal digit of number 4=(2,

0, 8) with rank A =8. Number 10 in the selected numeration systam

will be represented 10=(1, 3, 10) with rank rio=11. Dale it is

step-by-step A to 10, we will obtain a=(2, 0, 3). It is easy to

compute the rank of number a: 1= 4. The rank Cf a number 10a will be

defined as

10, -4* - [ j2-[- -o10=8

Page 289.
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Here the difference of the ranks cf number A and number 10a is equal

to zero, whence it follows that the latter/last decimal digit of

number A is equal to zero, i.e. A is multiple 10, and the obtained

result is true luotient. Is actual/real A=(2, 0, 8)=140.

Example. To find the latter/last decimal digit of number A=(2,

5, 8) with rank rA =10 and to round cff it to cne decimal digit. Dale
4;

A to 10, we will obtain a=(2, 4, 3). Let us compute its rank - r .

We compute the rank ran

rift=-50-[21] 2- 3

Hence k=10-3=7, t=10-7=3. The last figure of da:imal representation

exists 3=(0, 3, 3). After subtracting from A number 3, we obtain the

num ber
(2, 5, 8) - (0, 3.3)= (2, 2. 5),

which during the division into 10 gives

(2,2, 5):(0, 3, 10)= (2, 3. 6) J17.

Thereby is carried out the rcunding of number 173 to one digit.

Until now, was examined the roundiag of a number in the residual

classes to one decimal digit. [Hcwever, rounding can be conducted

immediately, also, on the arbitrary quantity q of dicits. For this it
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is necessary to divide an initial number not into 10, but into 10.

Let us consider an example with the rounding to two decimal

digits. In this case for the divider/denominator is accepted a number

102=100=(l, 2, 1), with rank rto=2.

Example. To find the latter/last two decimal digits of number

A=(2, 3, 8) with rank rA= 9 and to round off it to two lacimal 1lgits.

Dale is step-by-step number A to 100, we will obtain quotient

a=(2, 3, 8):(1, 2, 1)=(2. 5, 8).

As can easily be seen, its rank is equal to ra=1 0 Let us computa the

rank of value 100a

rj0 0,- 2 [T 3 ['O 10= -65.

Then a differsn:e in the ranks of actual and roundsd-off dividends

will be
k= tA-t00a= 74 .

Latter/last 2 digits are computed from those considerations

so that ke231+t would be finished by two zero. If bases/bases were

selected then so that the latter/last 2 digits 4 would be 01, then t

would be equal to 100-k. In this case the latter/last 2 digits of

product 74o231 are 94 and, therefore, t=100-94-=06.

Thus, the latter/last 2 digits A are 06 = 0, 6, 6). Subtrahend

from A number 06

(2. 3, 8)-0. 6, 6)= (2. 4. 2)

. ,Ma
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we divide result for 100, i.e., (2, 4, 2):(1, 2, 1)=(2, 2, 2). Ve

will obtain the quotient (2, 2, 2), which is the rounding of number

(2, 3, 8) to 2 decimal digits.
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From all that has been previously stated, it follows that the

described procgiur3 of rounding can be carried cut to any numerical

length. Since in this case are conducted the cparations above the

ranks, then it is expedient to represent rinks in the same system 3f

residuil classes so that all cperations would be conducted uniformly.

The nonmodular to operations include the shifts/shears of

mantissa to the left and to the right oa q of digits.

In the positional system with basis/base p the shift/shear of

mantissa is to the left produced by the appropriate displacement to

the left of the code of mantissa and by replacement by zero newly

appearing to the right digits. Frcm an irithmetic point of view this

indicates multiplication A on pq. Knowing the representation of number

pq in the system of residual classes, it is possible by

multiplication A by this number to obtain the rasult, equivalent t3

shift/shear on g of the digits in the positional representation of

number A. The p3ssibility of multiplication immdiately on pI (i.e.
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the knowledge of representation in the system of the

remainders/residues of value pq for any q) is analogous to the

presence of the register, which shifts the code to any numerical

length.

It is possibla to realize multiplication on pq by the

consecutive multiplications q of times by number p, represented in

the system of r.siiual classes. Here it suffices to only know the

appropriate representation p. This path is analogous to the pressnce

of register with the shift/shear of the code to one digit.

Example. Bases/bases: pl= 2 ; p2= 5 ; p-=7; p,=23. Let A=13=(i, 3,

6, 13). It is nacessary to shift number A to the left by 2 decimal

digits, ie. , p;= 100 = (0.0,2, 8); A = A.100= (. 3, 6. 13) (0, 0, 2.8) =(0, 0,5. 12). 1S

actual/real, A, = (0. 0. 5. 12) = 1300.

Using a number 10=(O, 0, 3, 10) it is possible the same

operation to fulfill consecutively/serially

(.,.-10o) 10 =((t , 3, 6, 13) (0, 0, 3. 10O) (0, 0. 3. 10)=

=(1, 0, 4, I5)(0, 0, 3, 10)=(0, 0, 5, 12).

The shift/3hear of mantissa en q digits is to the right produced

by the displacament/movement of the code of mantissa on q of digits

to the right with tho rejection of digits low-order q digits and by

replacament by zero newly appearing to the left q digits.
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The arithmetic content of this operation is of the subtraction

of the number, formed lcw-order q digits and division of the obtained

difference on 10q.

In conclusion let us consider the algorithm of the execution of

the frequently met operation cf dividing the number A into one of the

basis P of the system of bases/bases.

Page 291.

In the casa of dividing the number A into basis/base pi, when the

minimum trace of dividend is unkncwn, datermination by its method of

nulling can be combined with the determination of the digit of

quotient A from basis/base pi
Pi

Let in the system of bases/bases P,, P2.....P. be is preset number

A=(a,, a2 ,. .- , 0, .. quotiQnt of the division of which into

basis/base pi are r- =(0,, 1-: . .).

Let M,' =(aX, 2......2!i. 0, <,_,.. small from the numbers,

which separate on Pi and these having digit a, on basis/base pl.

-I,
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Through ,,=(0, , ... , - ... , , let us designate small

of the numbers, which separate into p, and Pi, in which a2 - digit on

basis/base P2 and so on up to Mx=(0, 0, ...,0, a). Let us designate

through YP' the digit on basis/base Pi of number = (1=, 2, ... n n).

Then, tarrying out in the process of nulling the addition of digits

YV ) through modulus/module P1, we cbtain unknown digit Vi.

Of course it is possible in a similar manner to obtain digit Vt

1also, luring the pair nulling.

Assume now we should number A divide intc the product of

bases/bases Pit ,.. p,'t =5. It is possible to lead in parallel

division into each of Pi (q= 1,2 .... k) and to join the results of

division on the basis of lemma about the division into the product of

numbers. Howevec, is feasible another path which is advisable, when

the composition of the bases/bases, entaring 1. is fixed/recorded.

which occurs, for example, with the rounding. In this case the

process of division into can consist of two stages: the 1st stage -

reduction of nunber A to the form, which separates into P, i.e.,

nulling digits on bases/bases pi,, P,, ..., pit; the 2nd stage -

determination of the digits of the quotient A': P from the

bases/bases, entering , by nulling digits on the bases/bases, not

entering .

The reiaining digits k':i are obtained by step-by-step formal
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division.

Lot us consider the execution of these stages.
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'The 1st stage is realized on the basis of nulling 
number A by

4 minimum numbers of form:

AM=( Iac4.,)...., 1 ,,c4t') The small number, which has digit ai on

the basis/base Pi,; ...

M ' q = ( W i) , a ( l. .t , . ' a
q1 q, small from the numbers, which have

digit a on basis/base pi, and multipla to product Pit. P1 . Pq..1.

As a result of ezecuting this stags, organized by nulling on one

digit or in one step on two digits, is obtained the 
number

A' = (P, , ..., 0 .. ... o0 .... , I

having zero in the bases/bases, entering 1, 
and least differing from

A froe all numbers of this form.

the 2nd stige is realized by nulling number K' by minimum

numbers of following form:

' .•. .I
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Ah ol ... , '0, ,o,-small from numbers, multiple .

which have digit Ot on basis/base p, and so forth up to

-smallest of the numbers, multiple flPIvhich

have digit on basis/base Pn.

To each number hcorres pondsa r.= (yji,y) ) t he num ber, w hichI is

digits on the bases/bases, entering 1% quotient Rp

As a resule of executing this stage with nulling of digits on

the bases/bases, not entering P. with the help of appropriate numbers

2 M, is produced the addition of numbers ri, which gives as a resultAj

* r~v41,~m..,Y~).~the number, formed by the unknown digits of quzotient
A'on bases/basas pil., pig,.. Pik Is far as digits are concerned
P

* remaining -=-,then they, as has already been i.ndicated, they are

formed by the formal step-by-step division of the corresponding

digits V into ligits P
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Lot us not3 that this second stage is actually the variety of

the process of expanding the system of bases/bases, ioe..

determination from the digits of a number on some preset basesfbases

of the values of its digits on any other bases/bases.
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Let us consider the use/application of this method based on specific

example.

Let be preset the system of the bases/bases:

Pja.3, P2=5, P3=7, P4 1I, p5=1 3

with range R 15015.

As the divider/denominator lot us select the product of

*4 bases/bases p3p*g i.o.

PPp3P4=7. 11 77(2, 2, 0, 0,12).

The minimum numbers, necessary for the nulling on bases/bases p3 and

P40 are:

MU3 (1 1, 1, 1, 1) M43=(2, 2, 0, 3, 1)
M~j= (2, 2, 2, 2, 2) M44=(1, 0, 0. 4, 5)

M 33 -(0, 3, 3,3, 3) M4 5 '(1, 4,0,5, 10)

MS =(2, 0, 5, 5,5) M,47=(1, 2, 0, 7,7)

M3=-(0, 1, 6, 6,6) M48 -(0, 3, 0, 8. 11)
M~j -(2, 1, 0, 1, 4) M40 =(0, 2, 0, 9, 3)

4 M".- (2, 0, 0, 2, 9) M41 0=(0, 1, 0, 10, 8)

The minimum numbers, necessary for conducting the second stage

are:

M11 (1 4.0,0. 1) aITo rt0 , r1 (2. 2)
Ma - (2, 2, 0.0, 12) r, .= (j. i)

M21 -(0, 1, 0, 0, 10) r2 = (3, 3)
Mu -(0, 2,0, 0,7) r2,= (6. 6)
M- (0, 3, 0, 0, 4) r 23 =- (2. 9)
Ma -(0, 4, 0, 0, 1) r.. . (s "
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M. (0, 0, 0, 0 1) r, 3=(6, 2)
M ( (0, 0, 0, 0, 2) 5= (2, 4)

M53 10, 0, 0, 3) r53 =(5, 9
M 5--- (0, 0, 0, 0 4) r,,,- (4, )

" M,5 (0. 0,.0O. 0, 5) r,, = (4. 5)

M" / (, , , , 6) r.,= (3, 7)

M7 =(0, 0. 0, 0. 7) ix-- f. i'
M 5 8 (0 , , , , 8 ) r ,, 2 , 3 )

M59 ( 0, 0, 0, 0, 9) r",, = (2, 8)

M5 1o=(0, 0, 0, 0, 10) rfo =(1, 10)
Af tj = (0. O. O. O. 11) r ,,, = (1 4)

i45j 2=(0, 0, 0, 0. 12) r,,, =(0. 6)

'A Key: (1). in this case.
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Example. T3 divide number A=(2, 1, 2. 3, 2) into the product *f

bases/bases F=p3 p,=77.

The tst stage. Let us lead nullinq digits on bases/bases ps and

po.

Nulling digit on basis/base p=7:.

A3-A-M3m-(2, I, 2, 3, 2)-(2, 2, 2,Z 2)-(0, 4,0, 1, 0).

Nulling Iigit on basis/base p,=11:.

'A'mA-Mj,=(O. 4.0, I, 0)-(2, 1, 0,1, 4)-(, 3,0, 0. 9).
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As a result is obtained number A', multiple P.

The 2nd stige. Obtaining the digits of-the quotient

A' (1, 3, 0. 0; 9)

Let us first of all Foint out the Jigits of quotient on the

bases/bases, not entering ':

y = T-- (mod 3) = 2,

3Y2 '--f (mod 5) -4,

Ys 1-2 (mod 13) =4.
4.

SLet us null digit on basis/base p1= 3 :

A,-A'-M 1-(1, 3, 0, 0, 9)-(1, 4, 0, 0, 11)=,(O, 4,'0, 0, 11),

Lot us null digit on basis/base p2=5:

SA-A,-M%-(0, 4. 0,0, 11)-_(0 4, .,0. 1)-(0. , 0.O. 10,

Lot us null digit on basis/base p5-13:
. AS-tAl-Mm-8.,

r,-r,+r,.-, 3)+(1, T)-(I, 2).

Final quotient

A* (. 3, 0. 0. 9)

2 , 2, 0, 0, - "(2. 4, 1, 2, 4).
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Chapter 6.

COMPONENTS OF C3MPUTERS IN A SYSTEM OF RESIDUAL CLASSES.

St

§6.1. Adders on the arbitrary modulus/module.

In the positional numeration system the execution of arithmetic

*operation assuams the consecutive processing of the digits of

Ioperands according to the rules, determined by the content of this

operation, and it cannot be completed until am determined

consecutively/serially the values of all digits of result taking into

account all connections between the digits.

In the system of residual classes each of the digits of a number
4

is treated independently and the time of the execution of entire

operation is determined by the time, necessary for obtaining of

result on the greatest basis/base.

Lot us consider the methodolcgy of the construction of the

adders, which work on the arbitrarily preset modulus/module, carried

out on bistable elements. The use/application of the obtained results
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to the elements/calls, which have is more than two steadys-state, it

can only simplify the circuit realization of thA devices/equipment in

question.

Lemaa 6.1. Through any cross section of adler in the process of
adding two numbers in the generalized positional numeration system

cannot pass more than one transfer.
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- !Determination. The modulus/module of adder we will call minimum,

different from zero Mach numbers whose idditicn (or subtraction) to

* .the contents of adder does not vary its value, i.e.,

A±M=--A, (6.1)

where A - contents of adder.

* Let us point out the series/row of the basic properties of the

modulus/module of adder.

Property 1. In the adder with modulus/module M the result of sum

cannot exceed the modulus/module cf adder.

Actually/raally, let the result of the sum of two numbers A and
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B exceed modulus/module N, i.e., A*B>M. Then the result of sum can be

represented in the form &+B=C M, uhere C<M, or in accordance with

(6.1) we will obtain A*B=C< .

Property 2. If M - modulus/module of adder, and k - arbitrary
A +kM =A.

integer, then /\ Actually/really on (6.1)

A-LkM=ALM±A1M±=... ±=M=A.

Property 3. The modulus/module of adder is its second zero.

Assertion follows from the determination of the modulus/module of

adder.

Property 4. The adder of inverse code, which works in the

polyadic positional numeration system with bases/bases ,,........

has a modulus/module n , equal

M =a ... 3-1. (6.2)

Actually/really, addition to the contints of the adder ot value

. a .." is equivalent to output of unity into tqe feedback Icop

withcut a change in the contained adder.

Property 5. The modulus/module of the adder of the inverse code,

which works in the polyadic psitional numeration system with

bases/bases a,, n2, . ... A, is the number whose digits on each of the

bases/bases n, are equal to -4 I (i = 1, 2.

Por the proof of this assertion let us consider number B,
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registered in the polyadic positional numeration system in the form

B 1C)

Its value
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If digits ~'of the number in question are equal to nil we

will obtain

in particular, for the binary number system where 2 2, we

obtain

for the ternary system ~~2

M 3'- 1 (2 , 2,.2. 2)

and finally for the decimal system.

4M =~h 1 ol (9. 9...9, 9).

Thus, binary, ternary and decimal adders have the fixed/recorded

value of the moulus/modale: 21 ,3 ,1 -I which excludes the

possibility of the arbitrary assignment of modulus/module and causes

the following sequence of executing the operation of the additi~n:

a) formation/education on the adder of sum a~b;
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bl the comparison of sun a+p with the value of basis/base p,

c) the correction of sum by subtraction Pi, if occurs

relationship/ratio a4- >p.

The secuence of similar type operations usually is realized in

the arithmetic units, intended for the work in the decimal system,

but constructed on the basis binary elements/cells.

Is feasible the version of the acceleration of the operation of

addition due to the doubling of equipment. In this version the

addition of two remainders/residues a and 8 is produced on two adders

simultaneously: on one is implemented the operation u4-, on the

second a + -p..

In the case when on the second adder result is positive (is

examined the adlition of two positive remainders/residues), it is

accepted for the true; if result is negative, then for the true is

accepted the result, obtained in the first adder.

If the modulus/module of adder differs from the basis of system

to the small value, the ccrrection of result can be somewhat

simplified.
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Lat us considar possible situations with the addition of two

positive numbers a and 0.
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Case 1. The modulus/module of adder exceeds per one unit

appropriate basis Pi of system, i.e., M =p + I.

In this case are possible the following relationships/ratios

between the result of addition and the value of the basis of the

system:

a) if a+A<pi, then corrections are not required;

b! if a + pl, then contents of adder it is extinguished:

c) if a+p=M, then in the presence of negative zero adder it is

set unity into the low-order digit of adder with the simultaneous

extinguishing of ramaining digits;

d) if .4>t), then result of OFeration C it will prove to be

equal to
C= -+-M= -p-1 =-- -- l (mod p'),

i.e. is less than the true per unit. In this case in the adder carry
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circuit from th3 output/yield of the high-ordqr digit is thrown to

the input of ths second digit of adder.

Case - 2. The modulus/module of adder N per one unit is less

than the appropriate basis pi of system, i.e.

MZ=p- 1.

In this case appears the need in the corrections of the

following character:

ai if a +<pi, then correcticns is not required;

bi if a + =p,then v. obtain the result, sequal to *I, with the

preliminary output of transfer frcm the high-erder digit. Contents of

adder is extinguished;

c) if +P=M, then the circuit of analysis to the negative zero

adders extinguishes contents with the the simultaneous recording into

adder -1;

d) if G + P > Pt then we obtain the result of operation of

addition C in the form
C=a+P-W = a + p+ I (mod p),

i.e. is obtainal the result of more than true per unit. Adder in the

case in question can be carried out with extended carry circuit from



DOC f 81023914 PAGE

the high-order ligit.

Thus, if the modulus/module of adder and the basis of system is

separated per unit, the correction of result can be realized

relatively simply.
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The notic~abl3 complication of correction with a difference in

the molulus/module of adder from basis/base Pi already per two units,

forces us to seek the new methods of the construction of adders,

namely in the lirection of the new organization of interbit/interbyte

connections.

Let the adler consist of n of the bits, designated respectively

through ri, r2, .... r, with an increase of the precedence of digits. Let

us agree that the input of each digit of adder will be designated by

index i, and output/yield - by index J. Let us designate through Xfj

the connection between output/yield.ri of digit with input ri. of the

digit of adder. Thus, the presence of connection X11 ensures

connection on transfer r" of digit not only with rJ+4 but also with

r1 the digit. Lat us consider, which of the connections X,, must occur

so that the n-bit binary adder would work on modulus/module Pi, so

that would be satisfied the conditionM-Pt. The block diagram of
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adder is represented in Fig. 6. 1.

Let the va2lue of basis/base Pi be preset in the form

p1  214-1s, + 21'-ts,-.. + + 2S2 S
where

0, 1

k 1, 2,.,n

4' If contents of addar GLtakes the fcrm

whee L + 2 2-11 1 + -, + + 212 + 11,

jk = 0 , 1,

k =1. 2, .,., n,

the c-ondition of the equality the modulus/module of adler to

basis/base pi on (6.1) will be registerad in the form

It + S1 + Cd-1 + Xij -I,
i =I1, 2, (6.3)

where through c1 is designated the transfer from the i-th into the

i+1 digit adder or

S, C1-1 + X1j,
i= ,2, **,(6.4)
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.. ,,, Xf., .. , '.z , XT i,

Pig. 6. 1. Block diagram of adder with the additional constraints.

9. Page 300.

On the basis of celationship/ratio (6.4) can be formulated the

following lemma.

Lemma 6.2. In "nw the discharging adder of inverse code

R (r,, r-,..., r), which works Cu preset modulus/module

=2 t .. 2S2 -" S1 , additional constraint Xij can occur only in

digits r3, which correspond to zero values sj in the digits,

corresponding to single values s3 additional constraints must be

absent.

4

Deteraination. The weight of digit r, of adder is called the

value, which is determining, cn hcw much is changed the numerical

value of the contained adder with a change in the digit of this digit

per one unit.

The given above recording

, =211-11,, +... + 212 + t
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of the containal adder in the presence of additional constraints can

be used only as the symbolic indication of contents of the bits of

adder, but no longer is determined the value ef number L, since the

introduction of adlittional constraints Xj changes the weights of

single digits ri , included by these connections, and the value of

entire number L.

To a question about the effect of ne additional constraint X,

not the value of the contained adder answers the following theorem.

Theorem 6.1. Number L=(l,., . L1) vhich describes contents of

the binary adder of inverse code R =(ri, r2 . r,), during the

introduction to one additional constraint between the output/yield of

the J digit and the input of the I digit, is reduced by value

Page 301.

Aztually/rvally, after designating the weightlof the a digit of

the adder through g i we will obtain that in the absence of additional

constraints value G. of number L, represented on the binary adder,

will be

I!
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vhere , - numbor of unity, which are contained in the a digit.

The introduction of additional constraints XUj translates the

numeration systum of the adder in question frcu the binary into the

polyadic whose basis are determined by the character of connections.

If the basis of polyadic Fositional system are %,, n.  . and they

are arranged/lo-ated in the ascending order, then unity of the .

digit of number L 1= I), . . represented in this system has a

weight
"I-t

Hence the value of number L is defined is

k m--k

4

Lot oc:ur one alditional constraint Xj, which combines the

output/yield of the j digit with the input of the i digit, i.e..

joining the digits with numbers i, i+1, ... , j into the single ligit,

which works on basis/base a11 . Then the weight of each digit with

number j and less, it will be defined as

am- 2"-1,
in-' 2. . j
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The weight of digit ith number j+l and uore will be defied as

gm 2'1njj2 'i- --

M=+I. n.

Page 302.

As can easily be seen

• "~tiS -2-l+i - I,

whence
g,., 2" - 26.

vhere

=m -:-i-j-2,

or in general form for any digit of the adder

9,n 2-1 - 298,j,

where
,,

6,,n { 0, ec.H m < j,

1, ecJIH M>j,

Key: I). if.

vhence value GL vill be defined as

V. f

CL - n ,,2e.

at the same ties in the absence of additional constraint value GL of
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number L is equal to

GL ln2 -1

i.e. with one and the same coding of number L. its value due to the

introduction to one additional constraint Xi is reduced by value

AOL m--.+ i 'mv

that also composes the assertion of theorem.

I

Let us consider some corollaries of this.

Corollary 1. The value of number L will not be changed, if

additional constraint Xj is undertaken from the output/yield of the

high-order digit of adder. Actually/really, with J=n we will obtain

4 Corollary 2. Number L = (wh i2 .... j), which describes contained

n-bit adder of inverse code with one additional constraint X, cin

accept not more than n~i-j different numrical values, which

correspond n+i-j to the possible constructions/designs of adder,

which corresponi to the preset modulus/module.

Altually/rgaliy, the presence of one additional constraint Xi

indicates that the group Cf (J-i+l)-th iigit works on moduilus/hodule
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.1j = -, 1. Reuaining n-J+i-1 digits are equal between themselves.

Vith the transfer of any of these digits with the group, which works

on modulus/module Zjj, the modulus/mcdule of adder does not vary,

since it is equal to

A4 = -jj2
n -j~t-j 1

and it does not lapend on the mutual location of digits.

Page 303.
t

4

In all the possible positions of the group, which works on

modulus/module'S' with respect to cther digits, there can be n-j~i-1.

in each construation/desiqn of adder number L, which describes its

contents, will in general take the new numerical value, determined by

the location of the I digit.

Lot us illustrate the aforesaid based on example.

Example. LUt us consider four-bit adder en modulus/nodule M=11.

Lot us introduza additional constraint X34 between the output/yield

of the fourth and the input of the third digit.

Version 1. J-4, i=3, n-4, t j z22-1=3, the modulus/module of

adder M 'tj2'-I- il. The block diagram of adder is represented in Fig.

6.2.
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Let with the adder be is registered number L=(1, 0, 1, 0), which

for the construction/design in question has a value 0 L- 0 , which

coincides with its value in the binary number system, since is

satisfied condition j=n. tet us consider the remaining possible

zonstructions/3esigns of adder, which work on the same modulus/module

q• .; I 1 1.

Ste
Version 2. j=3, i=2. ft. Pig. 6.3. Here number value is equal to

A

O S. since .GL=2.

Version 3. j=2, i=?. See Pig. 6.4. Here we obtainAOt=2. e.G4.e:

the agreement of number value in the second and third versions of the

constructions/designs of adder Is explained by the fact that ia the

preset number L they took 13=0, and then A1GL in both versions is

identical. Thus, although a number L is preset for all cases in one

tand the same form, it takes different numerical values depending on
the location of the group, encompassed by additional constraint.

Fig. oL,.

llll 5 ' -o 0.
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'9 Fig. 6.3. Blozk di~gran of adder cii modulus/module 11
AO 2.
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F Page 304.

Carollary 3. The modulus/'module of adder during the intr-od~icti on

to one alditional constraint Xjj, is reducied by value

AM =2L-J2 s,,2,

where s,,, - valu? of the m digit of a number, which describes th-%

value of modulus/modulr-. Fespectively by the sans value is r~aducnd

the range of the represented cn the adder numbers.

Determinati-on. By th-e independent additicnal const-aints Wz will

understand such additional constraints, each of which contains the

group of thp digits of adder, enccmpasscd by no other additicral

constraint, i.e., additicral ccrstraints X1, andXmn .we will call

independent variables, if are satisfied the fcllowing corditions:

or (6.6)
m>j.

For the case when on the adder is introduced s of the

independent additional constraints, can be formulated the follwirg

theorem.
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Theorem 6.2. lumber L = (11, 12, .,4), describing contmrts cf '-hp

n-bit binary adder of irverse ccde, duri.ng introduction s of th.

further indepenient connections between tha outputs/yields of difgits

with index it and the- input of dicits with i4ndax it, where t=1, 2,

s, is reduced by valus -AOL. W~er-

t-t rn-j,-i-t P-i

x 2eq~q± +q(-)7hi (6.7)
q2. q0 =

qi1q.F 'q
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Fig. 6.4s. Block diagram cf adder cn the modulus/mcdula 11 w"~&aGr*=2.

Page 305.

aere Bq~m+ ciq -2, is,, n.

Proof. for thp Oig4.ts with numbers m, which satisfy th,

condition

weight it is defined as

gm 2m-

For the digits, in which

+, I < M <.

the weight is equal to

g, = 2"-- 28

For the digits whose numter

i2 + I <j< 3,

weight will be lefined as

For the digits in which

Ia±+ I < m<j

Ag
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as can easily b- saan, weight is equal tc

g-= 2--2 - 2% _2, + 281+e,-(m-) + 2
8 1+0 3-(m -1)

+- 2s*+e'(l-1) - 2 e1+e,+eS-2(7l - 1).

continuing this process fcr the digits whose numbers satisfy th2

condition

h+ I <m I.<i,

we will obtain the value cf the weight

g = 2 - (281 20 + + ... + 2@9) + 2 8l+02-(m-1)

'+ 2 i+es-i-l + + 2e: -
1 +e t -(M -.)-

S(2 6o+0l+ea 2(m3 1) -_ •• 2 O_+O 1 8t2(f- -

+ 201+O-4-...+Oe-(t- Ij(m-)

Page 306.

'Taking into account that the wszight of a number or the adilr

without the additional ccrstraits is d._fined as

GL = 1.2"-1, (6.8)

we will obtain the decrease of the value of number AGL, coinciding

with (6.7).

Example. Are preset two additional constraints

X,, 1 and Xis. i, moreover j2 =n.
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In this case

where

For the fivs-di~it adr, which wcrks on modulus/module M=17, 41 hav':,

4=2, j1=3, i2 =4, / 2-n=5.

The block diagram of adder is represented in Fig. 6.5. in accorrcs

with (6.7) we will obtain

AGL-2J4+4a.

Example. Let bs giver three independpat additional corstraints

on the sevan-di3it adder, moreover j3=n. In accordance with (6.7) ws

ha ve

Fig. 6.6 dipicts th,: block diagrair cf the adder, which works cn

modulus /modu le %1=53. Here i 1 =2, jl=3, i 2 =4, j,2 =51 i 3 =6, j 3 =,-,7

Then

1 7
AG m"' - n6 14+45+ 41 87

M~j M'6
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Fig. 6.5. Block diagram cf adder cn the modulus/module 17 W14lh

AOL -214 + 44.

Page 307.

Is not deprived of irterest the construction/de sign of a Mar

Awith the dependznt additional ccnstraints one of which contains

another.

Theorem 6.3. Number L~4, .,.do-scribing contents of th - n-bit-

binary addmr of inverse code, during the intrcducticn of twc

additional constraints Xiil Xij of those satisf ying to the Condition~s

is reduced by value

where

9e~m+4j,-2,f=1, 2.

Proof. For the digits with lrumbers a, which lie within th?

limits

j2 < M < ,

we will obtain
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For the digits with the numbers

<5m<n,

of weight havi tha values

2 --- 28$ 2%.

iinc-, ta~ing itc acccunt (6.S) we will obtain

1.2 '+ 1. (22+ 2°) -

':m ffj I m fh

n+

w hich coincides with (6.9).

Fi'i. 6.6. Block diagram of the summator with respect to module 53
with AG. =2,+ 4,+ 14*+ 281j.

Page 308.

Corollary. If constraint Xj,, is connected to the high-order

digit of adder, i.e., j,=n, then

AGL = % /,2'
re-j2+!

Lqt us consider the case of three additicnal constraints qach cf

which is connected with that fcllcving.

Theorem 6.4. Number L=(l , 2...,,1 escribing contents of th:

binary adder of inverse ccde, during the introduction of three

additi3nal constraints XIth, X 1 1, X13j., of those satisfying to th-

conditions
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it < iz I i3,

it> i2 > i3,

is reduced by valu -

AGL 1.201 + Z 1m2 - (

Proof. or 14.M<j 3 we have gmn=2- 1 , foc j3 <mj, we will obtain

g"4 2m- I -20.

If j 2 <m.<j,, then

gm 2I(22 e(2" - -°  I)-16S=2m-I 202 2(3
.and finally for

£ j t<m <n

C'LCgm . u  
_ 208,

thencx_. AGL L-iCI

AGL- + , (2" 2 ) +

m=-a+1 m= j2+t

=. - 1 ,,. ,2°°- 2,_ - 2e3),

which ccincides with 
(6.10).

Taking into account the uniformity of proofs, it is possible to

formulate general/common/total theorem.

Page 309.

Theorem 6.5. Number L=(It,I2 ...,. ), the describing contntt of the

binary adder of invarse ccde, during introduction s of additional
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constraints \ 1.j, Xj2.3, Vi,;. or thcse satisfying the condi * icn

i 14i IsJ i2.

is raduced by value

M l+1 m ,-.-1 -7 - I

Theorem is proven analogously witb previous.

Example. T: find the correcticn of th, value of number AGL. if

conn-ctions Xi1 ,,,Xiti;, X W. satisfy the conditions

Lat us first find the weight distribution of the digits:

for I< <jz gmn=2--J;

for i2<m.<. gm=- -l-20V

* for it< r - ., =2m--2O- - 2e.:

for i3<M<n m , =2-'-28t_28t 22 -
+ 20,-(m- ).

Whence

AGL ~ ~ ~ : 1,22 Ils-\ m20b -

M-jrl-3+M m-+1

- , m (2e01. 2 eS)2e03--(M-.)
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Example. T: find the correcticn of the value of number AGL, if

constraints Xih' Xi2j2, Xij3 satisfy the conditions

it < i2, i3 : ' i2 it ->/3,

i.e. constraint A,,1, contains independent betwean themselves

constraints A ... Let us find the weight distribution of thq
-9

digits:

for 9m""</2 12";

for i2< m <i3 gm=2 2,-l_202;

for i3< m <i g=2m--2es -20 2 0t-03-Ot- t0.

for i,<m< n , =2--_2 e,  212 2 3 -i20e,os-(mI)

who nce

4 m 2+ 1

Page 310.

Example. To find the correction of the value of number AqL, if

constraints Xwe ,Xi ll 4WX3i', satisfy the conditions:

i3>111 i1>12, i3>1 I i, >j3,
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i.e. constraint X,, and X,,, are nct depsndad, and constraint Xij,

contains constraint Xt .

* Let us find the weigbt distribution of the digits:

for 14m<, gm=2"- 1 ;

for jz<m<j1  gm=2m1--h

for I1<m4j2 gm2--2;

~1

for ia< m 4  g =11-s-- +-- 1-- + ... + m "t)+

for i < f. =2MI-2 -2 - -2S + ,+(m -t)+
+ 2 8,+,-(m-1) + 20+ -1"- ) +

+ 2O 041-m- ) + 2 08+04-(m- 0
_ 2 1 +, + , -( -, -)~ 4 2u-e a _: , .I )

I

whence

y--+t M-;t~i mnS4

+ m284+ E f 2el+82-Qn-i) +

+ I , 2 l~s.*Sa(m-)+ 1Im (2 e1+4-(n- +
M-14+

+ 2'%O4-( - ) + 2e*+8-'M-

- 261 3 .- 3(m- t) _ 20,+ ,o- m- )).
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Page 31 1.

§6.2. Types Cf addars and the execution of operations.

Almost for each basis/Daso can be proposed different

constrcticns/dasigns cf adlers, %hich -ire characterized ty !,i

character of additicnal ccnstraints, and therefore, and the valu _  'f

correction AGL. Let us consider 3dders with .<100, moreover fo: each

of them fcr ths purpose cf the decrease of redundancy we will chocsM
such construction/design in which AG, would be minimum.

Adder on basis/base p=3. The block diagram or adder s dpictc.d

in Fig. 6.7. The basis cf systel E=22-1=3 is realized on the binary

adder without the redundancy. Additional constraints it is nct

required Xj,=O. Respactivily, GL = 0.

Adder on bisis/base p=5 . The block diagram of adder is

represented in Fig. 6.8. The use of additional constraint Xjj, wneri

i=2, j=3 it makes it possible tc cbtain AGL =0 In this case th?

modulus/module of adder will Le defined as

M=Ala- 1 =5.

since here wt=2, and W2=2-1=3.

Adder cn basis/basf F=7.



DOG 81023915 PAGE

L~i
Fig. 6.7. Fig. 6.8.

Fig. 6.7. Blcck diagram of adder cn modilus/module 3.

Fig. 6.8. Block diagram of adder cn modulus/mcdule 5.

4, Page 312.

The block diagram of adder is representad in Fig. 6.9. Is used

ordinary three-ligit binary adder, since the basis of system p=2 3 -1=7

on the binary adder is realized without the redundancy. in this casm,

is logical X'j-= 0AGl = 0.

Adder on basis/base p=11. The block diagram of adder is givo' In

Fig. 6.10. The use of additional coDstraint X,,, where i=3, j=4, it

makes it possible to obtain AiL=o. In this case the modulus/module

of adder will be defined as

M= ,'tX - I 11,

where w-vZ2 -2; W3 =22-1=3.

Adder on basis/base r=13. The block diagram of adder is c.,
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in Fig. 6.11. Is built-in additioral constraint X~j, where ._=2, j=4.

In this case AGL=O Modulus/mcdule of the adder

M n; - 1-- 13,
where v1=2; w2=23-1=7.
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Fig. 6.9. Fig. 6.10.

Fig. 6.9. 3Jock diagram of adder cn modulus/module 7.

Fig. 6.10. 51ocK diagram of addqr cn modulus/module 11.

7- * -,V

Fig. 6.11. Block diagram of adder cr modulus/module 13.

Page 313.

Adder on basis/bas- F=17. The block diagram of add-r is

represented in Fig. 6.12. Are here introduced the additional

constraints

where j 1 =j 2 =j 3 =n; i,=2; i2 =3; i3 =4; AGL=O.

The modulus/module of adder is defined as

Here ri= 2 Z-1=3; r,= 2=3=2-.
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If the basic criterien of the selection cf

constructing/dasigning the adder was tendency toward the decr-.as of

a number of constraints, then it is expediant to use the diagram,

depicted in Fig. 6. 13. Are here introduced twc additional

constraints: X .. where i,-2; j 1 =3: i2=4; j 2 =5. In this case

-AGL 4. Ths mcdulus/!odule cf adder is detarmind by value

Al -t1 .-. ,~3 -! -17.

whern w-2; v 2 ==wj=2 2-1=3.

Adder on basis/base p=19. The blcck diagram of adder is

represented in Fig. 6.14. Are introduced additional constrain-.s

Xhj ,, Aj., in which jl=j_--5, i 1 =3, i2=4, thanks to which AGL=U. rh

modulus/module of adder will he defined as

- 19.

where w,=22-1=3; YLw 2 v 3 2.
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Fig. 6. 12. Block diagram of adder on modulus/module 17.

ir 5

Fig. 6.13. Block diagram of adder cn modulus/module 17.

Page 314.

Adddr on basis/base v=23. The block diagram of add.er is giver in

Fig. 6. 75. Is built-in additicnal ccnstraint Xij, where i=4, j=5, ir

consequence of which we ottain AGL=O and the modulus/modul? of thT

adder

*X4=:rinT 3.+- I = 23.

Hertz v,=3; wj=2=v 3 =2.

Adder on basis/base p=29. The blcck diagram of adder is given in

Fig. 6. 16. Is iatroduced additional constraint Xij, where i=2, j=5,

thanks to which AG=O and the modulus/module of the add -r

M = i.i 2- 1=29,

where v 2=20-1=15; w,=2.

Alder on bisis/base p=31. The block diagram of adder is 'ieaictzi

in Fig. 6.17. Binary five-digit adde~r with the feedback wcrks oL

2odulus/modula 1=2s-1=31 with correctioft AGL = 0
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Fig. 6.1L4. Block diagram of adder cn modulus/module 19.

n Fi3. 6. 15. Block diagram cf adder c- modulus/module 23.

Fig. 6.16. Blc-k diagram of adder on modulus/module 29.

Pags 315.

Adder on base p=37. The block diagram of adder is represented in

Fig. 6. 18. Adder can be carried cut by the addition of one bit to the

adder, which works on modulus/mcdule 19, and by the

inclusicn/connaction of feedback. Then the modulus/module of adder is

defined as

M =;a-1 = 37,

where : =19; ;=2; AGL=O.

Adder on basis/base r=41. The block diagram of adder is given in

Fig. 6. 19. Are introduced additional constraints Xi,,1 , X.,j,, X,,i,,

moreover jl=jz=j3=6, i,=2, iz=3, i1=5. In consequence of which

AGL=O and the modulus/module of the adder

,W = ((X5J, - I) 32 - 1) Xt - I = 41

with rs=3, w=wprw=4 2.
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Fig. 6.17. Block diagram of adder on modulus/module 31.

II Fig. 6. 18. BlocK diaqra3 cf adder on modulus/module 37.

Fig. 6.19. Blccr diagram of adder on modulus/module 41.

Page 316.

Aidqr on bisis/base v=43. Elcck diagram cf the adder is shcwn in

Fig. 6.20. Are built-in additional constraints Xjj, and Xi,j,, wbZere

j,=j2=6: i,:3; i2 =5. In this case the modulus/module of adder is

equal to

M = (t5-14=-t-1I) 32t - I = 43,

where vs=22 -1=3; w,=v 2=w 3 =w4 =2.

Adder on basis/base p=47. The block diagram of adder is

represented in Fig. 6.21. Additional constraint Xij, where i=5, j=6,

ensures AGL=O. In this case the modulus/moduls of adder will b

M 1 I 47
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with v5=3, vj=v2=w3=v,=2.

ider on basis/base p=5 3 . The block diagram of adder is

-epresented in Fig. 6.22. Are irtzoducei two additional constvdInts

Xi, 1,,, in which jlj26, i 1 =2; i 2 =4.
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Fig. 6. 20. Block diagram of adder on modulus/module 43.

Fig. 6.21. Blcck diagram ef addor on modul'is/trodule 47.

PsIS * S P

4 Fig. 6.22. 31C7K diagram ct acqaer on mfoulus/module 53.

Page 317.

in this case AGL=0 and the moidulus/module of adder wi.ll b- !ifin-l-d

as

(343n - 1)>ir - I = 53,

where w4,2 3 -1=7; n 1j=w 2 =ur3 =2,

Adder on basis/base p=59. The block diagram of adder is giver in

Fig. 6.23. Is iatroduced additional constraint X1, in which i=3, j=6,

thanks to which AGL=O and the modulus/module of the adder

M - 1=59

With W3 = 2 4-=5, wrlw 2 =2.
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Adder on basis/base F=61. The block diagram of adder is given in

Fig. 6.24. Occurs one additional ccrstraint Xj with i=2, j=6. Ir this

case AGL=0 and the modulus/module of the adder

M=ntn- I =61

with w-=25-1=31: w=2.

Adder on basis/base p=67. The block diagram of adder is0

represented in Fig. 6.25. Cccur four additional constraints:

Xhi, Xi ,, Xi~j3, X!4,., wherp ji=j2=j3=j,=7; J.=3; 42=4 ;  i 3=5; i,=6, thanks

to whizh AGL=0 and the modulus/module of adder is determin:ed

M = (((:4;15 - 1 ) .14 - 1 ) .33 --1) 32-11 1 67,

where ff 6 =3; 'r=r 2 = 33=W4 = s--2.

i.-
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Fig. 6.23. Blcck diagram cf adder cn modulus/module 59.

Fig. 6.2a. BlocK iiagraw Cf adder cn moiulas/rodule 61.

Page 318.

4"

The same modulus/modulg can te realizad cn the adder,

* represented in Fig. 6.26, but icr it AGL=16.

Alder on basis/bass p=71. The block diagram of adder is given in

Fig. 6.27. Addqr has three additicnal constraints: X, Xjj, Xjj,, in

which j I=2=j)37, i1=4, i2=5, i3=6, &GL= 0  and 2odulus/module is equal to

whetre rp,=3; w=zW=¢w=

Adder on basis/base p=73. The block diagram of adder is given in

Fig. 6.28. Adder has four additioral constraints and aodulus/m,3flula,

characterized by the relationshipc/ratios

/,=j=ji= j,=7, i,-2, i,=-3, is-5, 4-6, AOL-O;
M=(((,- 1)-,a,- I):i- 1)a,- I .t3,

I
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Fig. 6.25. Block diagram cf adder on the modulus/module 67 .. 1h-AGL=o.

Fig. 6.26. alo:;k diagram of adder on modulus/module 67 ,1-h AGOL16.

Fig. 6.27. Block diagram of adder cn modulus/module 71.
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Ailer on bisis/base F=79. Adder circuit is represented .n Fig.

6.29. Occur two additional corstraints: Xi,,i, Xw,, moreover j,=j2=7,

i,=5, i 2 =6. In this case AG,=O and th_ modulus/module of adda- will

be defined as

with 6=3, W=v=v31=ws= 2 .

Adder on basis/base p=8 3 . The block diagram of adder is

represented in Fig. 6.30. Are realized three additional constraints:

I _ - ------ - - -
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Xi~i j,, Xiis 4 e jIj 2 =j 3 =7 i I=3; i 2 =4 i3=6 tharks 'tc

ALIL=U and. the modulus/mcdule cf adder will be Jefined as

with w6=3, vjt 2 =w3 =W,='5 S2.
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r7!! s Is r. rr
Fig. 6.28. Block diagram cf adder cn modulus/eodule 73.

Fig. b.29. Bloca liagram cf adder cn modulus/module 79.

4.

i: I
Fig. 6.30. BlocK diagram cf adder cn modulus/module 83.
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Aider on basis/base P=89. The block diagram of adder is given in

Fig. 6.31. It is realized by three additional constraints:

x,, xi, xi,,, where j 1 =j 2 =j 3 =7: il=2; i2-- i3=6. In this case

AGL=O, and the modulus/mcdule of adder is determined

M =((=,8 i4.,- I ) .i - I ); - = 89,

9r 4 e- =3; .'%=:3==,=2.

Adder on basis/base r.=91. The block diagram of adder is

represented in Fig. 6.32. For the realization of adder it is

sufficient two additional constraints; X 1,,X,j,, moreover
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j 1 =j 2 =7, 4.,=3, J-2=6. Then AGL=O and tae modtalus/modula ci ad1.= 4:

equal to

With F6=3; v1=W2 =r 3=vwS2.
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Fi;. 6.31. BlccK diagra- cf adder cn moflus/,odule i9.

c.__. __ I _L

Fiq. 6. 32. Blocw diagram cf adder on modulus/rodule 41.

4.

Fig. 6.33. Blcct diagram of adder cn mclulus/uciule 97.
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Aider on basis/base c=97. The block diagram of adder is

represented in Fig. 6.33. For the realization of adder it is

necessary to introduce four additional zonstraiats: ,,, ... X1,,, 'Vil,. " ...

in whizh jt=j 2=j3 =j.=7, i,=2, i=3, i=4, i,=5. Then AGL=O- a n t

modulus/mcdule of adder is determined by value

with ws=7, w,=w 2=w 3 w=w=2.

L j z .. ... . . , _ -,2 
.
- . . ,..,., . ,,. . . ..L , . L,. ,, "I • , -
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As tn'e i1llustration 1i t kis satisfy the addition of two numnnr-3

on. the adier with modulus,'2odule fi=53.

Example. r: sum thf numbers

2= 42= 101010

45 = 101101

on the a iii r, w'hi i wor ks or. mo dulus/modues =5 3.

1 01010

"'hmxa nepemoca '
38*NCCCKUS nepenoca 1 If

t~yUM~O~aMe UPSAROA CyMW C flepemocati IOU0IO

Key- (1). Step-by-step sum. (2) . Carry outout. (3). Recording of

t ra nsf a r. (. A d I i tion cf step-b y-step s um w ith trar stars.

is cotaine I t he :ps ul 1*ot id Jitlo n 2+ = 10 0 1C3 4. Actui 1ly/reai11vy

xo-3=7 (301d 53) =314.

Lat 'is consider the executicv of the operation of subtraction on

the adder of inverse cole vitb additionil zonstraints.

Uisually the operation of the subtriction of a number 3 'f:o7 a

nusber 2 or tne a.ders is imnlemiented bv th-3 addition cf a unz

with tnis tidition of A nu1~oer tc the iodulus/module of Au r i.=
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where

On the binary Iliers withcut the additional constraints the ailitirn

of a number 0 to the value of the mcdulus/module of adder is r-?aliz=

simply by the inversion of a number .

The introduction cf additional constraints translates adda., as

it was shown aa:lier, into the polyadic numeration system with

bases/bases a, . , where the inversion of a number differs4

somewhat from its addition to the modulus/modulea.

Page 322.

The fact is that the inversion cf the digit, undertaken or. basi-/ba>

,. is the fcrmation/educaticn of addition to aj, while we shcull hava

an addition from -T - I. In cther wcrds, the inversion of the 1iqf-tc,

included by additional ccnstraints, exceeds the addition cf dijits on

their modulus/module per unit, whereas the inversion of the ligits,

not encompassed by additional ccnstraints, ccincides with thair

addition to tha modulus/mcdule. Hence the addition of a number can b-

obtained as follows:

- on the additional constraints of alder is adjoined unity;
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- cbtaired codo is inverted.

lI the adders in which requirement AGL= 0 the addition of unity

is exposed/persistently facilitated by the fact that the additic'ral

constraints usually proce.d only frcm the high-order digit. %!nc sh

additior. of unity according to the additional constrair-s iz

equivalent to the imitaticn cf transfer from th3 high-o;der i

Let us consider the execution of the operation of subtraction on

the adder, whi: works cn medulus/modul3 .1=53.

Example. To subtract from a number a a numoer , if a=47=13111,

I=25=011001. Let us ccmoute value of 0,, which is obtained aft-r

iddition tc a number of unity, according to the additional

constraints

II

Let us finl by inversion the addition -of a number j: =J1 1100.

Let us find the difference

m-o= a + =10111-011 o! OIO ILo- 22.

Actually/really, a-0=47-25=22. 7he cperation cf subtraction i th

which the minu-nd is icuer than the subtrahend, must give the

addition of a number a- >0 to the mcdulus/nodu14 of adder.
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n exa.mplE. To subtract trnm a number a number a, if

2=47=1011 11, 0=25=011001.

Let us compute value a,, which is obtained after addition to a

number a of unity, according to tie additional constraints
1=01111

Let us find the inversion cf a number a: =000110.

Actually/really, a=6=53-43.

Let us find the result of suttraction 3-a

0--p--011001+,000110=011111, i.e. 3

Actua 21 y/really,

- = 25-47 =53-25-47 31.
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Let us consider the execution of the operation of multiplicaticn

on the adder with AGL=O.

Let us designate through a ard 0, corres Fondingly, the

multiplicand and thq multipliEr,

2n-,a,. + 2"-aa,-, -"•. 2a. - at,

- 2"-b_ + 2T-lb,-, 7 2b,: b.
Ther thin product of cpprands is defined as

, = (,2n-,) b. + (.2n-2) b,-, + (a2) b -, cb,.
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When AGL =0 we work with the binary code whose value completely

corresponds to the weights of the bits, so that the shift/shear of a

number to the l-ft, if it does net appear transfer from the

hiqh-crder digit, is equivalent tc multiplication by the binary

basis/base, while in the presence cf transfer result is ccrr~c-t.- =-

the value, equal to the mcdulus/mcdule of adder. It should 1_ note!.d

that both with the operaticns of addition and subtraction and with

the execution of shift/shear cn the addar with the additional

constraints is possible the fcrmaticn/educaticn of the result, which

differs from the unknowr by value ncdulus/module of adder.

Actually/really, in accordance with special

features/peculiarities examined abcve of the zodulus/module of adda_,
A

the latter is rapreserted in the form fi n-i for i=1, 2, ....

Since the modulus/modulo is the second zero adders, its pressncs

assumes the extinguishing of elementary adder with the output if

unity of the transfer into the rore high-order digit.

Naturally the report/event indicated cannot be carried out,

since transfer can be caused only by the number, which exceeds

modulus/module at least per unit.
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It is here interesting tc note that the construction/dosign cf

adder with AGL=O, psrf rmed by the introduction of additional

constraints from the cutrut/yield of the high-order digit of adder,

entity of the limitation indicated does not vary. Actually/r' ally,

reducing of additional ccrstrairts to the high-order digit of adder

permits to expt:t for correcticr on the modulus/modula only, if

contents of adder exceeds value 2n-I, i.e. they can take place

2i-I-- M of those not corrected cn modulus/mcdule I1 of results of

operation.
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The advantage of the fulfillment of the operation of

multiplicaticn on the adder with additional ccnstraints, is defined

by the fact that on it is required one correction of final rqsult,

and the others are implemented autcatically cn preset modulus/modul-

Pi, while on the adder where are absent idditicnal constraints, it

will be required in the wcrse case

[(pt- i) (PI -2
Pt

of corrections. In this case grows respectively the discharge/,igital

configuration of adder.

As the illustration let us give an example of the multiplicaltion

of numbers on the adder, which wcrks cn modulus/module %=19.
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Example. To compute Frcduct c, where the multiplicand

a=13=01101; and multiplier 0=15=01111.

Since the low-order digit cf the multiplier zero, to th- -id

will be brought in multiplicar. 01101. Further mult.plicand 4.3

shifted/sheared to one dicit tc t~e left, i.e., 2a=11010.

Since the second digit zerc, the moved one digit multiplicand is

adjoinr:d to the contents ef adder.

t')COtepxcHMoe cymmaTopa 0 1 1 0 1
(,Ca1am~yToe O'wHONCMoe 2a 1 1 0 1 0

00111
(-)3aHecemve nepeHoca qepe3 AOnlOJIHTeJHue cams I I I
(*,qacTRmqoe nponseAemme 1 0 1 0 0

Key: (1). Contents of adder. (2). loved multiplicand 2a. (3).

Recording cf transfor thrcugh a ditional constraints. (4). Partiil

product.

The third digit of multiplier is also different from zero. In

connection with this to the conterts of adder must be adjoinel the

multiplicand, movel to the 1eft one morq digit, i.e., 22*a.

Imq'ps mu,, 22s.g 1 0 1 0 0
i Caaeceme nepenocon 1 1 I

00001

(3)noropnoe 3aaeceme nepellocon I 1 I
(')Pesyahm r 0 1 1 T 0
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KPY: (1) . In this case 22a.t. (2). Facor'Iing of transfers. (3)

Repeatad r3cording of transfers. (4). Result.

Let us count tha next sum of partial products.

' 4'Cqwmoe IypoH33eaeHme 1 0 1 0 0
N iL)CaBfHHyToe MHoNCHAEoe 0 1 1 1 0

(3) 3afecen ruepexocos
('44aCTm'woe nPou3Baeii;- 0 1 1 1 1

Key: (1) . Partial product. (2) . Mcved multiplicand. (3) . Reccrd4.ng of

transfers. (4). Partial product.

Fourth digit cf the multiplier zero. Let us find 23e.t=11100. L'at US

7 ~compute thc? partial product

(1 )3a~ecene nepe~ocos I I I

I1 100 0

Key: (1). Recording of transfers.
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Thus, was obtained the result

ao -I1000 -24 = 5(mod 19).

Actually/really, result is accurate, s-oce by testing in the3 d~cimal

system we obtain

ao - 3-5 95=5 (mod 19).
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Given earlier lemma 6. 1, which claims that through any crss

section of binary adder with the addition of two numbers cannc- pass

more than one transfer, for the adder with the additional

constraints, which works cn the arbitrarily preset modulus/module, is

in general not applied.

The process of addition on this adder of tdo numbers a an 3,

which satisfy zondition Q<,1, f<M, ccnsists of the following

operations:
4

- step-by-step addition cf numbers A and B with tha

formation/sducaticn of transfers;

- addition of step-by-step sum with the obtained transfars;

- addition of the ottained result with the transfers of flirther=

circuits Xj and feedback loop in the presence of transfer from the

output/yield of the high-crder dicit of adder.

On a number of possible transfers for the adders with ths

additional constraints can be fcraulated the follcwing lemmas.

Lemma 6.3. Through any cross section of adier with s alitional

constraints Xgj, working cn modulus/module I and with AGL=0, i -*h
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process of addiag two numters a and 3, which satisfy the condition

L<M, A<M, (6.12)

Can pass not more than twc transfers and cannct take th . plac _ of

more than one transfer frcm thp cutFut/yield of the high-crdqr 3igi

of addr.

( -)m , 2. 2.

Proof. On (6.12) thc greatest possible sum takes the fcr

From the high-order digit more than one transfer leave cannot, sinc
4,

after carry cutput contents of adder GL is reduced by valu

AG,=2"- I- Xtig.
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Page 326.

Here w -eight of the group of the digits, included by ccnst:aint

Xjj, and in th? extrev case 0 L is aqul

GL=2W-I-2"+ Xigi.

L-t us ccnsidar now how is changed the modulus/module of s-n'l-

polyadic digits and entirs. adder uFcn inclusicn/connectior of s

additional constraints, which begin from the high-order diqit of

adder. The modulus/module of the digits of adder, included by

low-order additional corstraint X,,, is equal to

.W "-i+1 -

Upon the inclusion/connecticn of following on the precmderc:

connection X2, we will obtain the modultisimoduli

M2 20-',+t - I -

Upon the inclusion/connection of the third connection

M'13 = 2_- ' +t - I - 24, - is - 2s-i,

Upon the inclusion/connection of connection with number s we will

obtain the mcdulus/module
a-I

M s) = 2". - - I - 2- 1 21%,

The total mcdulus/module cf adder with the feedoack will be Pqual to

A-.2"--I - %- - T * (6.?!3)

li I I - I ~ I II - H
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raking into account that in the case

X Xglj = 2%-t

in question from (6. 12) and (6. 13), we will obtain

i.-. tha Second transfar from thp high-order digit is impcssibl-.

Page 327.

4,

Any digit of adder particiFates maximum in two additions. (nP of

them - this is the add-itocn of operands, the second - addit-.cr with

the coda according to the additional constraints, since the ccd

according to the additional ccnstraints enters the addition not mcr

than one time. But with each suamation is feasible only the on_2

transfer through the cross section of adder, that also prcvqs th0

assertion of lemma.

On a number of possible transfers in the case of unccrrect.d

operands can be formulated the following lemma.

Lemma 6.4. Through any cross section of n-bit adder with the

additional constraints, ccnnected to the high-order digit of ad2.:r,

in the process of idding two numbers a and 0, that satisfy th,

condition < 21-, 2"-
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can pass not more than thrRe transfers and not more than twc

transfers can leave the high-crder digit of adder.

Proof. Actually/really, let us consider the case of the adiition

of greatest numbersa=2"-, 2 n -, whose sum a+=2"+'-2. 75 =

minimum modulus/molule, r~alized cr the n-bit adder, obvicus.v, %s

not lEss 2,-z sinze for the rpalizaticn of a modulus/modul -e 1-s

even per unit, it would be sufficient have (n-l)-digit adder.

But then already in the presence of two transfers from the

high-order digit, contents of adder will be GL=2"-2 and th- thirl

transfar frcm tne hiqh-order digit of adder is impossibl. On tha

strength of the fact that the adder participates in three ad itiors,

a quantity of transfers in the crcss section cf adder cannot b: o ,:

than three.

§6.3. Bases cf tabular arithmetic.

Determination. By the tatular realization of the

relationship/ratio

z= f(xi, YI) (6.14)

let us agree to understand the crganization of such table in which to

each combination of input values xi and y, corresponds one ind only

one value of output quantity z.
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It is logi:al that the access to such a taole in terms rf vilus s

zj and yt assumes appearance at its output/yield of value zi.

The idea of the use cf tables in the computers is not n-w.

the storaqe of nachines are built-in tn9 tables of the vali-s oT-

initial values, zable of differnt constants, values of ietrn.arv

functions, etc.
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There -re many zircuit embodiment of the tables, which roalizz :hs'-

or other logical functicns. Fcr example, the idespreal schn~ic Df

decoder for the n-bit binary code realizes 2" the possible

ccmbinations cf th- codes. iith thp morn general/more common/To-:

total approach to the schematic cf decoder, assuming the realizati:n

of any possible binary ccmbination at its 2" outputs/yielis, wd will

obtain 23" diffarent output functions. In this case, naturally, will

not be withstood the one-to-one ccrrespondence between the nunop- of

combinations of input values x, and y, with output z,, but vlie 22*

characterizes the functicnal completeness of decoder diagram.

Studying questicns of machine arithmetic, we will be, in
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essence, interested in the ta t' 13r r: alizat;on of re lationsh ?_-'_i -

(6. 14), or the oasis of thp fact that xg, y,, zi for all pcss-b!l . val,i.s

of i are whole non-negative numters.

[r, X) - the range cf a chance in value x,;

[), Y) - the rar.(g of a chagap in valle y,:

I
[0, Z) - he range of a change in value z,

Then a number of possible mutual combinations x, and yj il1

be defind as by XY. The cor.diticr for one-to-on.' correspcndeic- xyj

to values z, will determine the requirement

Z<XY. (6.15)

Assuming subsequently, that the valups of input values lie/re:st at

one range [0, X) , wr will obtair 74X2 .

Datermination. By redundancy j of table we will understand the

difference between a number ot Fcssible ccmbirations of input valuzs

and number of the permissible values of output function, i.e.

= X'-Z. (6.16)

rhe redundancy of table directly characterizes its design ccnce4p " an I

indirectly its 41bzctrical parameters. If Z<X2, then th.s means zhal

sets XY anJ Z ar_ no' cne-tc-cre, i..e, to this combination ,. ,

Z ar n-., ce-to cnI
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corr;sDonds one an! only one value z:, rd to this value z t -

correspond not only one ccmbinaticn x, and y, In this cas- ca- b

set tha task abhut the selection cf constructing/designing th- table,

which will mar. it possible maximally to decrease a quant_4y cf

luolicat-1/backed ui/relrnorcea resi,!ts.
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. Determination. By j assembly lot us agree to understan-d part

of the table, which realizes relaticnship/ratio zj f(x,, yj)

Obviously, in general a number of assemblies of table will b

defined as N=X 2 . This is correct, when is rmalized each pcss4 lz

combination of input valuqs, and thenr tne outputs/yields of

assemblies are joined acccrding to the rules, determinced by th- f_-r.

of the function f. Functicn f ciaracterizes ccntents of operat in,

whilq sr.ts X and Y detormine the ranges of input values and from the

content of operation they do rct deFend.

Determination. By ccefficient cf the use of table let us ijrz--

to understand the expressed in the perc-.ntages ratio of a luanti-.v f

possible cutput values to a quantity of assemtlies of table, i.;.

V 100 % . (6.17)

Value_ , reciprocal to the coefficient 3f use, we will call th4

ANl
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coeffirient ot £cduniancy, I.E.

(0=-' - 100%. (6.18)z
Lit us consider for an example of the characteristic of table,

which realizes two-ccmFcnent cp.ration in the binary positional

numeration systam. Oprands x,, y, an .. values cf possible rps11lt3?

oDmration lie/r-st . the rance [ C, ), where X = 2n. *encS a " . .

possible combinations of input valums or, 4hich is the samr, a -imb^_ -

of assemblies of table will be defined as N=X=22". 5u. zossie

results of operitaon l'_e/rQst at the same range, as initial vaes.

...c...... reduniancy cf table will be

,.=2 2" (2" n_ 1).

The cogfficient of use is defined as
100 2- o

the colfficient of redundancy

As we see, the characteristics of tables are exponential

functions frcm a number of input. Therefcr . the execution of

arithmetic operations in the iositicnal machines by purely tabula:

methods realizei up to no'. in viaw cf an enormous quantity of

required -4uipmant.
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Actually/rally, if wr consider the arithmetic unit, which wcrks
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the binary positional numeration system an! which uses, fcr zxi:,'=,_

with 30-digit numbirs, i.3., n=30, then for the tabular rpaliza-ion

of any operation will be required table with a number cf assemblies

N=2 6o1018. Its redundancy also will be defined as j l018. Th 2

coefficient of utilization will be v=10-9%, i.e., it will b-

necessary to construct the in pract:c . uinrealizable ccrst:uc-i -

wnich will be used by 10-9 percent.

Qualitativgly different results we will cbtain upon transfer tc

the system of residual classes. Fcr the realizaticn of the same ra,;=

cn the order cf 230 cr 1G9 to us to sufficient use a system cf

bases/bases 3, 7, 11, 13, 17, 19, 23, 25, 29, greatest of which

requires for th= storage 5-bit Unary register.

For the realization of operaticns on the greatest basis c=2) :f

numeration systm in qu-stion is required the table, whose ±nr,- . r. an

output data vary in the range [0, 29), i.e., a number of assemblics

of such table will be defined as N=292=841, and thp coefficiant of

its use will be v=1i%=3,3%. Fcr the realization of operaticns on
29

the smallest basis/base p=3 will be required the table with a nunber

of assamblies N=3 2=9, and the coefficient of the use of this tavl-

will be defin=d as v 33,3%.

The given above calcuiaticns cf the characterizing table viluis
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ar-- given in thL most gertral/mcst commcn/most total plan/laycu:,

without the account to the ccimutation of input, which for the

majority of operations occurs, .ithcut the account to the pcssioility

of using soecial coding, the crcanization of work in th4 secor.

step/stage, eta. Subsequently let us see, that the enlistment -

further infcrmation can substentially improve construction/-sin =:.,i

characteristics of tabl a .

From that stated above it is evident that the questions,

connected with the execution ct arithme-ic operations by tabulir

methods, it is axpedient to examire only in application tc zhe

arithmetic units, which wcrk in the residual classes.

Further, the series/row cf the operations, realizel by

arithmetic ones by device/equipmert, does not require the

use/application of two-input tables. For examplr., the realization cf

such functions as e-, in x, all trigonometric functions, the

calculation of the value cf pclyncmial with the constant

coeffiziqnts, atc., requires the use only of the single-inDut tables

whose zcnstruction/design is significantly simpler than two-inout.
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In them wa deal concerning ona argument, whicb are changed in t'.

A .. . .r' ,.. - . .:.. ... . . . '. , l@ - '



DOC = 81023916 PAGE

range 0, X) ani, naturally, is iTplemented only the number of

assemblies of tables which is irtended for the realization of oitput

quantities zi from the range (0, Z). Here almost always N=Z. In this

case are obtained redundancy J = O, coefficient of use v 100%.

Therefore subseluently it is Frcpcsed to concentrate attention D- l ',_

in thp two-input tables and to ccrsider th ,3 series/row of

considaraticns which can be drawn fcr simplification in thoi -

constructions/designs and improvei rt in the characteristics.

Let us consider th realizaticn of tha operaticn cf the

multiplication of digits a, and p by tabular method on simpl

basis/base p,, Let us make table cf the numerical values cf proluct

ai~i(modp), where numerical values ai will be deposited/pcstpon-d

along the horizontal, and the numerical values of second cfacto:

- on the vertical line. In the points of intersectior we wil

indicatq values a1oi(modpi). Fig. 6.34 gives this table f:r p, = . A-

can easily be seen this table is symmetrical relative to left and

right diagonals, and it is alsc symmetrical relative to vertical

lines and horizontals, which Fass between numbers P-J and P1+L
2 2

Actually/really, symmetry relative to lift diagonal is detqrm.in-d ov

the commutation of operation, symletry relative to right diagcnal is

determined by thle fact that

(Pi - at) (p, -[ a) (rod p;).

Symmetry relative to vertical line and horizontal is datermirel by
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the fact that the sum of symmetrical numbers is multiple p.. .-.

at~ + a, (pi -,)0 (mod pi).

ai~ -(i at)Pi=_0 (mod pi).

In such a way as to restcro/reduce table, sufficient to have an

information on1y about its eighth part. Hence appears the r- !

possibility to sho:-en th- tdale, which realizes the operation

multi plication.

For the solution cf the problom indicated it is consdt_- by

advisable to use the special ccdirg cf numbers u. and h -h

so-called "ccdI of tabular muitiplication".

Page 332.

Values a,, lying in the range 0, P I  an be coded by arbitra_-y

method. Values a,, lying in the ranae LPI -  mp ) are cc a

Pi - i.

For a difference in the ranges is built-in index y . which is

determined as fcllows:

KeCy: 0 < .< -
I ec.aH - . a, < pl.

Key: (1). if.
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Thus, if is preset number a, then for obtaining the value

pi-I it suffices to invert index y.

Theorem 6.6. If two numbers A and B are preset on basis/bas=

p in the code of tabular mul plicationA=(y.,m1 ),B=(yp,pg), then in

order to obtain the product of these numbers cn modulus/mcdu>lz Pi,

suffices to obtain product at(modpi) in the code of tabular

multiplicaticn and to invert its index y if y, is excelle.t f-on

4, YO, i-t?
A1B (mod p) (y, ipi (mod p)), (6.19)

where
Yj Y , YY Y.' (6.20)

Key: (1) . if.

Proof. Let us consider all pcssible combinations of the

relationships/ratios between -y and yo:

Cecjr i , = y = O to AtBi (mod p,) -- = (mod pj);
OecnH y, Ye = I(ro AjBt (mod pl) - (P1 -al) (pt- 01 ) x
x (mod pi) -- ,, (mod pfy;

Key: (1). 4f. (2). then.

If y,==, while y0=- cr y_=O, while y8=, that one and ths sia

in view of the commutation of multiFlication, then
A1Bj (mod pi) = mi (p - P) (mod pi) m (p, -=) P, (mod p,)

e--- p, - (mod pi),

i... is necessary the inversicn of the index cf product a,, (mod p,). -,
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the basis of th:. theorem cf table given above, that realiz-as th

operation of multiplicaticn, car be structurally/constructionaliy

reduce! four times. If we additiorally take into account the

commutation of the operation of multiplication, then during thaI

preliminary determinaticr of larger of -he cofactors table can

reduced two more times.

Page 333.
4

As the illustration let us consider the layout of the tab:..,

which realizes thq execution of the operation of multiplication on

oasis/base p=11. The numerical table of product mzi(modii) is givzn in

Fi. 6. 34. The vertical and hcrizcntal axes of symmetry are

arra c/lcat batwpn =5 and =6 Let us write out all
2

va-.ies of the code of tabular multi lication for p=11. Code m. as

is saii above, can be selected with any method. Of it it is rnj]ii-

only so that it would mutually unambiguously correspond to this digit

of basis/base. For simplicity let us take binary positional tha col.
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1 2 3 4 5 6 _ _7 8 9

1 2 3 4 5 6 7 8 9 0

2 2 4 6 8 10 1 3 5 7 9

3 3 6 9 114 71

4 4 8 5 92 6 0 3 "

50 4 9 3 8 2 7 16
4 ,I I I

;6 6 1 7 2 8 3 i 9 1 4 10 5 .

7 7 3 10 6 2 9 5 1 8 4:

8 8 5 2 10 7 4 1 9 6 3'

I 9 7 5 3 _ 6 4

10 110 9 6 5 4 3 2 1

'i;. 6. 34. Tabl. of thi numcrical value_ off product '2i (mod I)

Page 334.f dPpa y L-op y (z, _

1 0 0011 6 1 101
2 0 0 1 0 7 1 0 0
3 0 0 1 I I
4 0 00 9 0 1 0
5 0 1 0 1 0 1 0 0 1

Kay: (I). Digit.
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Value J ani pj=i1 we do nct code, since multiplication by thse

values gives zero, and in this case operation will be perform;?l -nct

rapid by the simple analysis of operands. If necessary these values

can be also connected with thE t atle.

Let us shcw now based on examnles that with the uscl of th cod-

of tabular multiulication for the cperands, undertaken from thi

diff.?rant squares of numerical table, always result we will ottair in

the l-fft square which must be virtually realized.

Example. Let us multiply digits a-3 , i.e.
ap(mod 11) = (0,011) (0, 100 (mod 11) =

= (0,001) (mod 11) = (0,001).

Here were multiplied digits with the zero indices. To rasult is

assigned zero index.

Example. Digit a=8 tc multiply by the digit p=3:

ao (mod I)=(I, 001).(0, O;) (Tod 11) =(1, 010).

Since in the operatior participated the digits with the different

indices that tli3 index of result it must be inverted, i.e.

coj (mod 11) - (, 010).

Actually/really,

m, =,8.3 (mod 11)=2 (mod 11).
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Example. To multiply digjit or7 by the digit 0=1O:

aA(mod 11) (I, 100).0, 001) (mod 11) =(O, 100).

In the cp~ratio. participated the digits with the identical

indices, that means result does nct require ccrrection.

Let us ccnsider the row tatular realization of the operati~zr. 7'

addition and let us determine the fcrm of the code, most convenient

for bcth operations.

During the tabular- realizaticn of the operation of add-4tion us

it can interest the circuirstarce that for determining the valu:e of

the digit of sum is noct required the knowledge of the digits of

operands separately. Both the step-by-step addition and transfe r threy

are detormined by thp collective stt of the digits cf the o~a.s

which have identical numtc-r.

Page 335.

In this case for thr ste-F-bY-steP addition it is important to know,

identjcal they or different ones, for forming the transfer are

important to know, are bcth digits single, for the propagatiLon of

transfer it is tmpcrtant to know, are these digits diffsrent. Thus,

the table of adlition car bp noticeably abbreviated/reduc-ed, 41 to

its input wi-ll be given nct the n-tit binary cparands, but the
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csrtain n-bit cod - th- so-called "cod.a of the tabular addition",

-ach of digits of which can have three values: one of them k,0

occurs, if both i-th digits of cperands zero; k,,, if they single, and

k,p, it th, ccrresponding digits of cperands are diffarent.

If th4 i fijlts of the operands of addition are designaer

through a, and A,, then, cbvicusly,

k, 0 = , A Pi,
ki = a A iA (6.21)kiP.i~~aAi

Thr tncraas= ir num ter cf sets of 6abl
- is det.rmined by t:,.

fact that it is now necessary tc realize not 2s, while 3n

assemsblia s.

Further simplificaticn in the table is possible, if we us= nct

only values k0, kjj,k,p, but also their inverse values. In this cas-

obtained sufficiently idle time the logical description of babis.

Thus, for instance, Fig. 6.35 d.picts the logical description of th -

table, which realizes t e executicr of -he operation of additior. on

modulus/module p = 29.

in the lcgical description of table for the brevity insteal of

designations kAo, kA1 , k1, are accepted designations k3, k1 , kp '!th

tha indicaticn :f thcir irvarse values k0, k,, k. Through-lines i: tae

separate cages/:ells of table .ndicate the independence ot res'ilt



DOC 102391F PAGE

from the values of the corresijonding di-jits of operands. By iJr!'- a

the markedly ccll-?!tive: value ef the low-cr-der (first) digit s of

operands, i.flQ423s b, c, d, e designate the collective values

respectively of the seccnd, third, fcurth and fifth digits of

oppranis. All asslembli-s, which relate to one digit of result, ar-,

join-d at the oitput/yield by CF cate

Lat us recall that for the addition on the modulus/module?

indicatedt in general it is required 22n the assemblies, whers n=3,

i.e., N=210=1024 to assemtl4es. In Fig. 6.35 is described th,,e ta:i'e,

which realizes the samip cperaticn cnly 108 by assemblies.
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Paqe 336.

I Pa3pIA Pe3Y-IhbTT 2 pSpA Peay~ibTST 3 PiUPWA Pesy~ibTaa 4 pa3p.A ple3y~lbTa~a 5 Pa3PR( p 3YAbTaTa

e c b a & d C ao Did cb a ed c b 1ed c b a

I I --

kpL -o 7 p ko - p k.Ap ~~ ~k AuA pt
1 ~ 

0 -Ako ki'"
kn Ai - j p k 1  It Ap ki koI - kp k 1  Akl k

kl~~~ ~ ~ ~ kp 11, At, P' jp AiA l o k"k l k 4

I -P 
k4l k I k Ip Are k I 
Pk1 0 kI k I --g kp, - p A. Re - k, k, 'o t , , A3

-j IO k ; ik k - A tp It Al *p0R k.k,. , A Ao APp API A
kp ko - k~ I p t0 4 -k Ap Itl kI - ip ko ko - k1  Iti A1  It1  k;:, 0Ap - k, A!1  k, kp to k, kp k, k, - kp ki to - Ik1  k1  A0  A1  Ap k1  Ao A0
Ilp 41 kI p Ap k0 - Ao A1  ki - Ap ke ko - I k1, kl A1  A0  Al A1

hp k R p kp kj - kp -to kl - kp kI ke - 'A1  kp ki k, Al p ko kA k
RP p APIA i -k p Rp p Ri. - kP to Rp - kp kp Rl 1  A,' A 0 A k0  Apto l - 0

Ii kp 1p 110 A,, ki R1 4 0 ~ i ~ 1 An A op P ke ko Ril tp A0  A1  * 1  to R1  k0 A, o k p ko - WI A
kI pA A1  A1 k A p kp p A0o kp k, lip k" Ap I 

t 
o - -t 1  Al l" k " p A O 1  /to

kp Rpp Rp k* Io -pR Ipt k1 A1  Ao p koA~A
ki tP p ko Ap ko kp R1  kp kA0  A. oA1 A o- p

k p ~ ~ ~ ~ 7 k p k p I o p k p p k t o A ,,0 p k k I I
Ip -P k tp k I, k p k 0 k l i p kAc k p o

Rp Ali Rp RI to o Apl A1  -

Rp R1  Rp to ko ho A1 , A0  A1
tP R1  kp A1  to Ao Aj0pA~o
tp R,, kp R1  ;to hpAi ~ o

kp RP tp to to p ki AoI A1  k

Ap kyp k 1  Ap Ri' L

3 .5. L cqi =al lescr iptzon r f 't a le 0of ad di tion on modulis/-ijIel-

29.

Key: (1...digit of result.

Page 337.

it moust be notpd that 'the code of tabular multiplicat-,on isct

in princ.Dle suitable for th-e iise in th? operation of a'ldition, s4I c-
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one of the bits of this ccde Is syTmol -Y.

Let us look, how it is necessary to convert this code so that

could be used and as under tatular addition. To value pi-. tha codc
2

monotcnictlly inzr. ascs, aach stp/?itch varying per unit. Th2 symbo!

I c it is eQual to zerc. Bcgirrirc from value t to p, I I

code appears tha symbol 7=1, and the value of the code begins to

decrease. If we in the presence of symbol y=1 will invert the Working

,4 part of the codz in order to ensure his build-up/growth in the value,

then for using tho obtained code as the cod4 of tabular additic- 4t

4i necessary to determine the weight of digit y. The latter is

produced simply.

If wo through g, define the weight of digit - and to assume

that th;. working part cf- thiE code is preserved on (n-1)-bit re;ister,

then the inverse valup cf th= code of nimber pI-1 will be dpfin--d as
2

2"-'- I -
2

and weight valui it must satisf) following relationship:

g- - - P 2 --- 2

w he nce

g., = p+ - 2

Thus cin be cbtain-d the code cener el-puZpose both for the tauiiar

multiplication and for the tabular addition.
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It is necessary to again ncte that on the strenjth cf z fact

that the operations in the tabular arith metic are realized sily by

the sample of the value of result in terms of th.? values of inut

values, but directly arithmetic operations it is not produce2, in th.

tables there can be suitable almost any ccding. Speciai cc':n :.as ')'

its tarc -.t only r:%ucticn of th-_ szs/diznnsions c: tatls.

In general zonstructicn/desian and fundamental characteristics

of tables are determined by the range of input values.

Page 3J3a.

In connection with this is nct excluded the pcssibility of transition

4n the process of executing the cFeratien to smaller rice or to :h

work of arithmetic unit directly in the higher step/stage Cf t*-

system of residual classes. Let be give. numeration system wit-

bases/bases Pt, P2 .. p, and range p, in which number A is

represented in the form A = (a,, ab .. , U). Digit ai on basis/tis%

pi (i= 1, 2, ... , n) let us present in the second step/stage of syste:,

i.e., let us select the new system cf the bases/basas

qj, q2,. .

with the range

Qj 11 j
which would ensure at least the ncnapoearance of the result of i.
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compute r ousraticr. above:: digit a, for t he rang..4L is c bv4 cs that,

that as the greatest result ot adding iwc zemainders/residues on.

modualus/mcd ule pi canrct exceed values 2p, -2, we they must have

Q 2p -2;

sinca a roduct of two remain oers/res idles on modulus/module pi I

cannot axcasd (p,-i)', then

Qg > (p,-i)'.

It is logical ta.at the bases/Lases of tie second step/stag- aust

satisfy the condition

qj < p,
1~, 2. , ki, i ---- 1, 2. .. n.

In the case of applying the second step/stage of bases/bases is

considered by advisable initial numters by prcgram of the

translation/conversion tc represent immediately in the second

step/stage, arithmetic urit tc construct withcut the straJ:ht/ -

and reverse dezoda s as the dpvice/4quioment, which works or!7 i h

second sten/staje. And cnly the firal results of calculations sioull

De program translated thrcugh first stage to the decimal

representation for the final output from the computer. During this

construction the fundamental characteristics cf tables noticeably

will be improved.

Aztually/rcally, a number of assemblies of each table decreases

by valup ki
AN = p? q2. (6.22)

'-,,i
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Page 339.

Redundancy decreases cn

pt(p,-)- qj(qj-l)=AN--pi- + qj. (6.23)

Thp ccaffici4r.t cf thr use of tabl_ in the second step/staga G -r.c-

ns cr= tha: Jn tha first, whers E is d-fined as

A1

Pi qj
A. (6.24)

In this case, u-iaoubtedly, will be increased the general/co on/tzl

discharge/digital zonfiguraticr. of a number during its stcragm cn -he

binary reqister, since increases the total nuwber of bases/bases,

which Jo not coincide with the mcdulus/module of binary register.

Let us consider based on example, as vary tabular

characteristics upcn transfer 4c the second step/stage of bas4s/bas-s

for the operation of addition. Examination let us conduct, not isini

consideration about simplification in the constructicn/design, sinz

they are not connected with the value of basis/bas.

Example. L.t br presot in first stage basis/base p=50. A

quantity of assemblies will be defined as N=50Z=2500. Let us sn zc

the following bases/basEs of the second step/stage:

q,=3, q2 =5, q3 -7.
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Here Q= 3950= 105>2p.

From (6.22) it follcws that in this case a number of assembli-s

of table decreases by value

AN= 500- (9 +5 +- 49) =24 17.

Redundancy cr. (6.23) decreases hy valu?

A.7 =2417-50+ 5 =2382

relative to .=2450, ard the coefficient of use in (6.24) will t.

improved e orce where
a 9

i.e. almost by in order.

The digits of the second step/stag. of bases/bases can bz, ir.

turn, they are represented in tbe third steD/stage. For xam~ole,

digit aj or basis/base q, car. bte represented in tne svstem with
t

bases/basss PI, P2, .. Pf with range R = [" pi, that satisfies tho sani
i=--I

requirements with respect to the second step/stage which satisf_

the second step/stage with respect to the first.

Page 340.

So can be introduced the fourth and higher step/stage. in this 7as _

is Pnsured the naximum minimizaticn of tables and ara improv-.d the.r

characteristics, but increases -r binary discharge/digital
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configu~aticn. of =entirs rumber.

Ths limitation of arn increase in the number of steo/staqge Is 'ha

formulated previously ccnditicn cf the fact that any basis/bast? of"

highsr step/stagq pj must be less than the basis/base or f v~i

st:?F/st~ga q,, 4-e., pj~qi for all 1 and i.

As ain examole let us consider, in what highest step/sta,]e of

9 bases/bases can be roprespnted the greatest number on the two-1df'it

basis/base.

Example. To find the highest step/stage cf bases/bases for

executing the operation cf additicn with base of first stage r='q

one of the possible versicns cf the second step/stage it* can be

q1=2, q2 =3, q3 =5, q4=7.

The range of system Q=2e].5*7=21O, i.e., is satisfied the con ri'.

Q >2pi-2.

Thus, already in the second ster/stage we pass to the bases/has~s

maximum from which q4=7. In this case a number of assemblies in the

second stpo/stags will be def-ined as 44=22+3252+.72=87, and

redundancy .2(2 - a s

.7()=97-17=70.

Transition to the third step/stage, withcut having affr-ctzi

basis/base g1 , 12, q-3 , will make it possible to express the xn~
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basis/base q,=7 in the system of the bases/bases

with range R=15, in this case, as can easily be seen, is satisfied

the condition

R >2q4 -2.

Thus, in th. third st.p/stagr w' wcrK with the oasis/bases:

pW' -2, pJ=3, p' =5, p(4)=3; p ,= 5 ,

in whizh superszrip* indicates the equipment with the corresponding

basis/base cf the previcus step/stage. Transition to the fourth
4,

step/stage is iopossible. The tctal number of assemblies in h

latter/last system will te defined as

A= 22+32+52+32-+ 52=72

with the redurAdncy

9p = 72-18 =54.

Example. To fird the highest st'ep/stage cf bases/basgs fc::

executing the opsration cf multiplication with the basis/basa of

first stage p=9 9 . For one of the possible versions of the second

stap/stage can be accepted q1 =3, g2 =5, q3=7, g,=11, qs=13, with zinge

Q=15015. Since (p-1) 2=9604, then is satisfied the condition

Q >(P- 1 )'

Page 341.

For the third step/stage can he selected the following

bases/bases
p,=2; p2=3; P3= 5 ; p4=7,
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w it h r an q - R=2*3 5 7 2 10 , s i -ca i s s ati sf iqd th a corn ditic n

R > (q5 -) 2.

Thus, in the thiird steo/stag4n we will obtain th-? system of +h'

oases/bases

Transition to the fourth stec/stace is Jim pos siblIe.

§6.4~. Structure of the tables of basic operations.

For constructing the tab1ss cf basic operations is reDrss'-rs

by most spactacular the use/application of methods of the sp-cial

coding, which makzs 4it possible tc decre~ase the size/dimens-Lcn z f t

tables of addition, subtrac-,i.cn ard multiolicati-on four tirie-S. -'

decreasz cf tablzes by a factor of eight is less efficient fr-c7 t

point of view of obtaining tnaximuff high speed, since in thi-s cas:

before the input into the table it is nacessary to analyze, which ~

the oparands is more, and to respectively place them on the input

registers.

From the point of view of the prizea of equipme-nt this !-tbhcd

also is not so/such effgctivq, as it seems, since the decreas-, of

table two times nacassitatps the having of a diagram, which ariyz--s,
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which of the operands is more.

In the implementation of operations by tabular methods in a

number of casr-s tha- further pcssihl: decrease olf equipmrzn+ hb3caus'- IS

constructed not single tatle, wtich realizes result in the inar'

code, but n f1iner/smaller tables, '.hich realize respcns~s/ar.-si'::

each of thq r digi-ts cf the result, where n - discharge/digital

configuration of register, r!ecessary for storing t he digit cn the

basis/base in question.

In this case fairly cfter cccurs the unification of tablos,

i.e., the decrease of a quantity ef different types of tablers,

necessary for the realization of arithme tic unit.

As the illustzation. let us considper the method of the

construction of discharging tables for executing the operation f

multiplication on basis/bas-e F=17 during the use of the cods cf

multi plication.

For simplicity let us consider the case when the valur-s c:

operands are preset in single-digit ccde.

Thp code of multiplicat ion with p=17 takes the form
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Q iUH~ppa CioLIS.JI KoAp dnj ' -P

1 0 0001 9 I 1000
2 0 0010 I10 1 0111
3 0 0011 II11 1 0110
4 0 0100 12 1 0101
5 0 0101 13 1 0100
6 0 0110 14 1 0011
7 0 0111 15 I 0010
8 0 1000 16 1 0001

Ky: (I). Digit. (2). Symbol. (3). Code.

Page 342.

For the fulfillment of the oFeration of multiplication, as is

known, necessary to roalize one fourth of multiplication table.

L3t us writ? out new the same tablq for th-i low-ordsr di - i . cf

r;sult, after blackening thcse squares in which thi result has unity

on the low-order digit, ard after leaving not blackenea souargs wit'-

the zero value of the low-order digit of result (se- Fig. 6.36).

Let us construct by analogous method the table of single values

for the second digit of the result (see Fig. 6.37). Let us ccnstruc't

the table of the third dicit cf the result (see Fig. 6.38). and

finally let us construct table fcr the fourth digit of the result

(see Fig. 6.39).

k . -p



DOC = 31023916 PAGE

Destait',e thm fact that is reduced the size/dimer.sicn- cf -ac

table and is increased their quantity, as a whole occurs the prize In

a quantity of aquipw -nt, since to thn li-mit is abbrr-viatc-d/:. iucza

the redundiancv :)f tables and, as io see, a:-3 realiz-ed orly the

assemblies c,- --able, ccrrispondinq +o significant d:-iits cf r-s il-.

.......
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t fepsug onepaHa

1 2 3 4 5 6~ 7 8

~. 1 1 2 3 4 5 6 7 8
S 2 2 4 6 8 10 12 14 16
0 3 3 6 9 12 15 1 4 7
S 4 4 8 12 16 .3 7 1! 15
~- 5 10 15 3 8 13 1 6

6 6 12 1 13 2 81 14
7 14 4 11 1

~s 8 16 7 15 6 14 5 13

Kay: (1) First opsrand. (2). scccr!0 op-erand.
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Page 343.

'33

K ~ ~ ~ ~ ~ ' .1) Fi. .p .a. .2) .e n .pe.an.

K'~~~y: .1) .i s ... ..a.... (2) .e cn ..a
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Page 344.J

1t7,eodbjd oneoniud

3: 4, S

F g. 6. 3.

Kzy: (1). Fir~st coperard. (2)~ .seccnd opaerand.

C1 fleodba; 0neOawd

2

Fi.g. 6. 39.

Key: (1). First op- rand. (2) . seccnd4 op-,r and.
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Page 3'45.

Further dezreasp of r-guJ Fmcnt can oe achiivt-d/reached !becausr in

soma tablas can prove tc le a riirler of zeroc values of result- !Ss

t' tan tna- ~u mbnr c:f s a c- vp u's. I n th 4is aas e it is eX;)eCi' 7

rea1i z a zer o valu es , and resulIt t c 4-nver t a t the out r)ut/ y i-1I

The asel 7ect e-d by us rrcdulus/m cd tle D= 17 i r th e th re --low- cr a

i igit s h~a- ?Iual quartit" of zsro and nonzerc results. L: is

consider under above cor~itions acccepte'd th3 realization of

stsp-by-step tables for execuiting thc- cp-raticn of multiplicatiz n ,on

modulus/mcdulE ,)=19. In this cas the coda~ of -mltJl~cat-"cn t

U14ppa CliMBoA1 U. apa . ~ no ~

* 1 0 0001 0110
2 0 0010 11 1 1 CKA;

4 0 0100 I 13 1 101 10
5 0 0101 II 14 1 0101
6 0 0110 II 15 I0100
7 0 0111 16 I0011
8 0 1000 ii 17 1 1 001(1
9 0 1001181 0 1

Key: (1). Digit. (2). Symtol. ().Code.

Th-- tible 3.4 results of cperation takes th-e form



DO C :2 3 9 16 P A G

12 4~~e8 5fp 6j 7 8 9

S11 2 3~ 45 6 ~ 9
S2 2 4 6 8 10 12 14 16 18
S 3 3 6 9 12 15 18 2 5 8

0 4 4 8 12 16 1 5 9 1., 17
S5 5 10 15 1 6 11116 2 7

0 6 6 12 18 5 II 17! 4 1 0
S7714 2 9 16 4 11 1 8 6

cc 8 8 16 5 13 2 10 18 ~ 7 15
S 9 9 18 . 8 17 7 16 6 1 15

K~v (1) Fi-rst cp= ra nd. (2). Socc:nd opozran~l.

Page 346.

The tablo of tha singl values of thr- low-order diiiit cf prc~fict

acceDts thp fcrm

2 5 6 7

3

Key: (1) FiLrst cpararid. (2). seccnd opzran-i.
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For the second digit of result we obtain

I 4~ei onap6a7 8

N.'

Key: (1). First oparand. J2). Secend operand.

Pag" 347.

For the third digit cf the result

4A 5lpdi 6 7 8

-45
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Key: (1). First operand. 12). Seccrd oprerand.

For the high-order code digit of the result we obtain table.

Key: (1) .First operand. (2) . Seccnd operand.
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Page 348.

* Here we sea that in the table of low-order digit a quantity of

zero values of result is noticeably lover than the quantity of single

* values and it is possible it is mere than by 10o/o to decrease the

equipment of table, realizing zero values of low-order digit and

inverting them at the outFut/yield of table.

For the sa:oni and third digits the picture is reverse. it is

here expedient to realize the precisely single values of result. I

And finally for the high-ordetr digit are also expedient to

realize the single values of result, which compose a total of about

20o/o table.

4

Thus* as the mosat universal method, which makes it possible to

substantially decrease the equipment of table, is proposed transition

from the direct realization of ful./total/conplete table to the

realization of step-by-step tables taking into account the properties

of symmetry. for example, in the Implementation of multiplication

table on basis/base p=19 for the full/total/complete table it would
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be required 192=361 the assemblies, commutated at the output/yield.

In the case of applying the special code of multiplication and

step-by-step layout, even without taking into account the decrease of

equipmant lue to the numerical ratio and zero and single values of

digits, it is required

45+36+36+18=135 assemblies.

I

This calculation is made inaccurately, since, on one hand, was

not considered th% complexity of the assemblies (in the step-by-step

tables they are substantially simpler), and on the other hand, was

not considered the circumstance that in the step-by-step tables to

the input is fei the single-digit code for forming which is also
necessary the corresponding equipment.

In practice luring the reasonable engineering of tables

additionally to obtain, cn the average from 20 to 40o/o of economy of

equipmen t.

Substantially more simply and more economically are realized

single-input tables, i.e., the tables, working from one operand at

the input, since they are realized with the zero redundancy and they

barely require the enlistment of any methods, which simplify their
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construction/design.

Page 349.

§6.5. Principles of the construction of basic building blocks of

arithmetic unit.

One of the listinctive properties of the system of residual
'A

classes is the possibility of the independent and parallel processing

of each digit of a number in the majority of the operations of

arithmetic unit.

In connection with this in the arithmetic unit can be isolated

the series/row of circuits according to a number of bases/bases,

which work in the majority of the cases independently of each other

and in parallel in the time.

In the operations, which carry positional character, this

independence of circuits fails and the result of their work is

analyzed together for the determination of the positional

characteristics of a number.

But in a whole series of machine operations circuits function

independently and independently, defining the time of the execution

J~M9 .... .....
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- of entire operation by the time of its execution in the longest

circuit, and they can be designed as standard design.

The standard structural/design formulation of circuits has the

further advantage, which consists in simplification in the redundancy

of arithmetic unit.

DeterminatIon. By the elementary component/link of arithmetic

unit is understood the functional subassembly, intended for the

eXecution on th3 independent foundation of the system of operations,

realized independently, and structurally/constructionalLy designed

into the standard circuit of arithmetic unit.

* Here by the word "operation" is unlerstood not only the single

operation of arithmetic unit, wholly realized by the independent

circuits, but also the individual part of such operation, in which is

withstood the mentioned independence of circuits.

Let us consider in more detail, which from itself represents the

elementary component/link of arithmetic unit.

The block liagram of the elementary component/link of arithmetic

unit is represented in Pig. 6.40.

Lj "A,,
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Through Rg is designated the binary register, intended for

storing the binary code of the single digit of a number.

,* Page 350.

In all is assumed the presence of two registers Rgl and 3g2, intended

for the storage codes of operards, moreover to the register Rg2 will

be brought in result and from it is produced the readout of

4 operation.

Through KT is designated the deck of tables. Single table we

will designate by index It. Under the table let us agree on

subsequently to understand the functional diagram, intended for

executinq of inlividual operatien or single operation on this

basis/base, although structurally/ccnstructionally it can consist of

several parts (for example, when selecting of the step-by-step method

of organizing the tables).

Tables can be realized on any technical basis. For the certainty

we will proceed from the potential mode of their operation. This will

permit us to examine tabular type diagrams, which work directly to

each other, moreover result from the output/yield of terminal table

will be obtained without the further control signals.
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tnclusion/UOfnectioft the tep or another table of the deck Of

tables is produced by the feed to it of contrcl voltage along channel

CK - the "symbol of instruction".

Through To, we will designate triggering time of table on the

greatest basis/base with the execution of the i operation.

Rasult of operation is preserved oa the register Rg2. If

triggering time of table is small in compariaen with the time of the

change-over of input registers, then tha straight/direct recording of

result of operation on Pg2 is impossible, Therefore between the

output/yield of table and the input is connected "delay circuit"

(SZ).

4 77
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MP?

CKA I

PeeMcm0 ~ cro
P. Pt-2 I

8,od net'o o 8,od Smooo o
YucliQ

rig. 6.40. Block diagram of the elemontary component/link of

arithmetic unit.

Key: (1). Delay circuit is. (2). Symbol of instruction. (3). Deck of

tables. (4) . Register. (5). Input of first number. (6). Input of

second number.

Page 351.

As the delay circuit can be used intermediate register, delay lines

or any special diagrams.

The deck of tables has the seccnd output/yield, designated c ,

which is intended for the participation in determining of the

positional characteristics of entire number.

If we designate the time of the change-over of the register
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through v1 , and delay factor which ensures the delay circuit, through

r2, then total time v of the execution of the i operation on the

assumption that the operands are arranged/located on the input

registers of elimentary component/link, will te defined as

Tt = TOt + T + T2,

and the read-out time of result on output/yield ci will be equally

to Toi.

Determination. By the generalized component/link of arithmetic

unit or simply :omponent/link we will call the set of elementary

components/links on all basis of system.

If in the operations, perfcrued by arithmetic unit, were not

included positional type operations, then device/equipment would

consist only of component/link and local control unit. The presence

of positional type operations determines need in the introduction to

* - the composition of the arithmetic unit of the so-called block of

positional charicteristics (b.p.kb.).

Determination. The unit of the positional characteristics of

arithmetic unit we will call the functional box, intended for

determining the minimum trace of a number or, that the same, for

numbering of the interval in which is arranged/located a number.

rn~ - - . -
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In chapter 5 is examined the series/row of the methods of

determining the minimum trace of a number. Frc consecutive type

methods let us select the method of mulling and will consider how

will appear the unit of positional characteristics in the

implamantation of this method.

If is carried out the process of nulling on i digits i=I, 2,

... , n-1 is obtained the number

(0, 0. ... ', 0, a+, .+2 ..... a.=), (6.25)

then for the foLlowing stage of mulling is chosen the constant whose

i of the first ligits - zero, (i+1) digit coincides with digit

p1+t- +I, the others digits are such that the selected constant

would have the smallest pssible value.

Page 352.

Then during the addition of number (6.25) with this constant is

mulled next ifI digit and in this case is ensured the nonappearance

from the working range.

By distinctive features of this process is change at each

step/pitch of the values of the digits greater than the nulled one.

i.e., system the sequence of process. Actually/really, without having

finished the pravious step/pitch completely, i.e., without having

l _ .... , . ........ ... A
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fulfilled to th3 end the addition in the previous stage, we do not

know the more significant digits of the number according to which at

the subsequent steps/pitches will be determined the constants of

nulling.

Furtharmor3, with the execution of the process indicated we each

time work with sntire number, althcugh a quantity of significant

digits of number and significant digits of constants always is

reduced.

4



DOC= 81023917 PAGE

--- -- _ .---- Mc-' .3 33 .-. " I 3 i
3.~ "OOd c- .. 0,' '"n~ o I ,.d D. e

---- - ----- --- ,---
_ J _...JUi .... . ... G I

__L_0_.111, leo ",, ~

r , '"l no aO ec~ la..

I o,oftup/lb .o0mm .

Fig. 6.41. Unit of positional characteristics (version of nulling).

Key: (1). AnalysLs of more significant digit. (2). Formation. (3).

Arithmetic unit. (4). From output/yield of accumulator/storage of

constants. (5). Unit of analysis of mor3 significant digit of number.

(6). To input of arithmetical unit. (7). Deck of constants with

address. (8). Accumulator/storage of constants.

Page 353.

It is obvius that in the basic building block of positional

characteristics must they consist of the deck of the
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devices/equipusat of storage of the constants, rotation/access into

each of which is produced the apprcpriate digit of a number as this

shown in Fig. 6.41, and the unit cf the analysis of more significant

digit.

It is logical that the constants, selected in terms of the value

of the digit of basis/base pl. have significant digits on all

bases/bases, inzluding Pl, the constants, selected in terms of the

value of the digit of basis/base pz, have to one significant digit

less, and furthar, passing from one basis/base to the following. we

each time use with the constants, which have to one digit less, and

finally the latter/last group of constants has only two significant

digits. On the other hand, taking into account the ordering of the

system of bases/bases, from one basis/base to the next increases a

quantity of constants which must be preserved. In other words, in the

accumulators/storage in question consistently increases a quantity of

preserved words from pl-1 to p- I and1 in this case is reducd th%

discharge/digital configuration of these words on (n-1) digit in the

word to one digit.

After desilnating the access time Df constant from the

appropriate accumulator/storage through Tz,, w will obtain time

Tot of the execution of the entire operation of the nulling

T, i(n- 1) ( Tso.,- ,q).
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With the execution of the accumulators/storage of constants by

tabular method it is possible tc assume that the time of access to

accumulator/storage and the time, necessary for adding two numbers of

one oter, oM m = Ten. Then

-L T~~~l 2 (n -l ".,

The versioa of the execution of tha operation of nulling

examined is not cl@arly optimal from the point of view of high speed,

since the execution of addition and the sample of next constant are

spread in the time.

*

It was assumel that, until is completed addition, to us was not

known the digit on which must be selected the constant for the

following stage of nulling.

However, taus far is produced the sample of constant for the

number
1~~0, 0,..0, , i , -

in terms of the value of digit a,, on basis/base Pi, in the

elementary component/link, which works on basis/base Pi+t. it can be

prepared the value of digit a+,, on which in the following stage

will be produced the sample of corstant.

Page 354.
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Is actual/real, the value Aaj+. which will be subtracted from

ei+t, in order t3 obtain aj+1 , it is determined only by value ao.

Therefore if in the process of the sample of constant in terms

of value Gi the latter will be transmitted into the elementary

componsnt/link, which works on basis/base p*+,, then in terms of value

a, inl aijt from the appropriate table can be selected value .

i , i
But in this case in the constant, selected in terns of the value

of digit ai, there is no need to have a digit on basis/base pj t. i.e.

the discharge/digital configuration of =onstants decreases by one

more digit, vhi-h respectively decreases the equipment of the

accumulators/storage of constants.

If a previously quantity of the preserved digits S1 was defined

as
X-t"~S 2 , - (p, - I ) (.- 1),
i-i

then nov it vii be defined as

4-2

t-1

i.e. it decreases on

u-t

As= , (P- I).

The temporary/time performance record of the unit of niLing in
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this case is representod in riq. 6. 42.

For convenience in the description are introduced the followiag

abbreviations:

- rotatiom/access after the constant in terms of the value of

digit a, lot us designate Aet 06a,;

f - ormation/@lucation of following digit aj+j in the

elementary component/link, which works on modulus/module P,, to be

designated at,,;

iI
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"i; 000, 01j C,,t.., 2 d, 06 , ,,', 4@ ot',, 0o ' 4.

Pig. 6.S2. Tesporary/time performancq record of the unit of nulling.

Page 355.

- the adlition of nullized number with the constant, which has

. significant digits, beginning from the ligit on basis/base pi. we

will designate Z-,.

A number *f additions in the version in question is also equal

a-1. since the auLlinq is conducted through all n-I digits. Rowever,

after ovary tvo additions is required one further stroke/cycle for

forming of next address and rotation/aceoss into the

accumulator/storage. Fig. 6.*43 deficts one standard group of the ties

qra ph.

With addition Z,-. simultaneously is produced the

rotation/access into accumulator in terms of the value of digit "ai_,.

It is impossibl to combine these operations with the

formation/ed4cation of address at since the elamentary

component/link, which works on basis/base p,, is occupied with the

operation of al.ition. In the following stroke/cycle with addition
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Z.+t-, is combined the fornation/oducation of address ac. It is

impossible to fulfill in following addition ties .Z.+.-. since is not

carried out the sample on digit at. In connection with this to every.

two addition times falls one stroke/cycLeo, free from the addition.

Thus, the total quantity of strokes/cycles, free from the

addition, iuring which is produced the access to accumulator/storage

and the formation/education of next address, will be defined as

(a/21. and the total operation time of nulling as

T.E = ( +-I) ., [ t ,.

Takinq into acc3unt, as earlier, that

TW6 Tca,

we will obtain

T22 (L +-] Te..
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Zi'-. or c4 06 Cx'

pig, 6.43. Standard group of time graph.

Page 356.

With n even we will cbtain.

also, with n odl

?, ~3 n - 52= "

In general with n even we obtain shortening the operation time

on

.H TNI - TH2- (2(n--I) -- n-2 Tc. =-f-nT

or in the percentages

. 100% = (25: 2--..) 0,

i.e. not less than to 25o/o.

If n odd, we obtain shortening the operation time on

or in the percentages
;A" I W0 (25- +

Is feasible also the version of pair nulling. The set of

constants of this case consists of
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PiP4-1 P:P,,-- - Pn-i_.-i -

-2 
2

n--t)

= (Pp.-,-1) KOHCTaHT HAIH
I-t

S 3  I (PiP-- 1) (n - 2i) ixHop.

Key: (1). constints or. (2). digits.

The process of nulling a number consists of n-1/2 steps/pitches.

The block diagram of device/equipment is given in Fig. 6.144.

The total time, necessary for nulling of a number by the method

in question, will be defined as

n-I Te)T,3 = (',[D UO-

Page 357.

Here alrealy it cannot be assumed that T,0 , since are

required the accumulators/storage of the constants of the relatively

great capacity which hardly can be realized by tabular methods.

However, takin; into account that each of of the accumulators in the

process nulling works only on the sample of one constant, i.e., with

the frequency, in n-1/2 times of less than the frequency of the

steps/pitches of nulling, we, drawing the effort of
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accuauLators/stacage, can assume/set

Tame6 2z Tcfl

Then

The time of the execution of nulling by the method indicatel is

shortened on

A = -jg =f. (n7 - I) t

or in the percentages

i.e. process procaads, as one would expqct, two times it is aore

rapid.4

As an example let us consider, how the relationship/ratio of the

storage capacity of constants in all three methods of nulling on the
assumption that is preset the system of the bases/bases:

PI 3 7 , P2 4 1, p3 43 , p4 47, p5 53 , pe 59 , P7 6 1.
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f~ em aluxmetP~ C Kl7GM!7

oxL ~,7

Fig. 6.44. Deviz3/:Dquipment of the pair nulling of a number.

Key: (1) . Compomant/link cf arithmetic unit. (2) . Unit of constants.

Page 358.

Digits on all basis of system raquire for the storage 6-digit

binary registers. Since with an increasa in the basis/base is reduced

a quantity of significant digits, then we will consider total storage

capacity in a quantity of digits which must be preserved.

For the first method

6

=36-64-40-5 + 42 4 +46.3 +52.2 +58. 1 =884 1IH4~bI.

Key: (1). digit.

For the second method



DOC =811)23917 PAGE

5

=36.5 +40.4 +43.3 +46.2 +52.1 613 uAp.

Key: (1). digits.

~~And finally for the third uethcd

3

S3 (pip..- ) (n - 2i)=

(37.59 - 1) 5+ (41.53 - 1) 3+ (43-47- 1)= 19446 1wHp.

Key: (1). digit.

The same values can be compared between themselves, after

* leading to certain standard accumulator/storage, which has word with

a length of into 30 digits, although in reality this comparison

carries purely zonditional character.

Then total capacitance in the first case is conditionally

equivalent to a:cumulator/storage with a capacity/capacitance of iato

177 words, in the second case - to accumulator/storage with a

capacity/capacitance of into 123 words and in the third case to

accumulator/storage with a capacity/capacitance of into 3839 words.

Let us considar now possible realization of one of the parallel

methods of determining minimum trace of a number, in particular the

method of expanding the range.
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In this .mthol, as is known, is assigned number A by digits

cal. q... a, and is determined digit a,,+,, with which a number it is

correct in the 3xpanded range. Moreover, if S., is trace of number A,

then initially Is produced the expansion of the number

rank of which is computed from the formula

r MA= rnA

where ri rant of the corresponding minimum of pseudo-orthogoaal

number, and nA - number of transitions on basis/base pn, with

forsation/sducation SA.,

Page 359.

Then digit a(, of the expanded representation of number Ai

equal to

~ =(q rMA)(mod p,.+1).

First *f all here should te focused attention on the fact that the

majority of the values, which participate in the calculation, ace

only the functions of the digits cf an initial number and for the

operations with them it is possible to use values a, (isi, 2, ..

n-1),* recoding them at the input cf the corresponding table. Let us
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introduce the 13signation of some recodsd values: the value of trace

ST, of the minimum pseudo-orthogoral number

(0, , 0, . , 'Si)

we will designate Sj* f I (a), and tank its ri=f 2 (ai), member of the

generalized sum of the digits of number MA let us designate

1il 3 (at).

Hiere

X.A= f3 (SA).

Then the trace of number A can te registered as

SA f (ai) (iod p,.),

and digit M(4 - as

= F (a1) +13 (SA) -Amfl) (mod p.s),
'im

where

F (at) =(U (at) - f (MO) (mod prk+t)

Through f, (a,6) let us designate the corrective term for number

MA, the determined by values 'c6 and SA, after addition which to

number MA is obtained number A,, which coincides with number A in

digits at, a2, an- ~ In this case is produced the sign/criteribri r,

which is determining (with y=1) the presence of critical situation.

Page 360.
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Then digit an ' i on basis/base .- I of number A, can be defined

as

F F(a1 ) +,t-AMf) (miod p,), (6.26)

where

F (a,) =(f3 (SA) , f 4 (aj~) (mod p,,-,1).

The realization of expression ((6. 26) assumes the presence of

three groups of the equipffent: the first group of equipment for the

error of trace S., simultaneously with it :-A and a number of

incorrect pairs X., the second group of equipment for calculation

SF tar) (mod p. ) and the third arcup of equipment for final

Calculation a~and anal ysis of critical situation, if it occurs.

Fig. 6.45 lepicts the first group 3f equipment. It consists of

the two-input adders, designated by index 1 with the indication, on

what modulus/module they work.
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Y.' O cc ar. CL -. ,C' Z C -r Li,
.JL _LL 1_1 _L41

m~od:,, -od:,, *modp.,,: mid,, 7  mod D, o-- , d p,,*

Imodp,,. m. d " modp,,o

E °

niodp0 p, ,

)m o ado,,

Fig. 6.4q5. Block diagrams of the calculation of the trace of a

"number.

Page 361.

In all it will be required by k of the steps/stages of tables,

which work to each other where k - smallest positive number,

determined from the condition

2h-<n-I <24.

In this case ths computing time S.A and .r. in general is defined as

k Yg.
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The second group of equipment is performed also on basis k of

the steps/stages of tables. Calculation with its help of value
n-1

Y. F()mod p,,+-) is produced after kro time intervals. A difference

in the first two groups of equipment consists only of the coding of

values a (i=I, 2, ... , n-1) at the input of thR tables of first

stage.

In the second group of equipment in proportion to the addition

of values F(a1 ) are summarized binary signs/criteria k. being

determining the parity of the minimum pseudo-orthogonal numbers each

of which is wholly determined by value ai ((i=i. 2r ... n-1). Thus,

at the output/yield simultaneously with value F(a;) (modp.-) is

computed the value of the parity cf number MA, namely:

(MA) , kf (mod 2).
i=1

And finally the third group of equipment, represented in Fig.

6.46, realizes 1:alulaticn -1 and sign/criterion r. If the critical

case does not take place (T=O), then value a( is the unknown

minimum trace of a number. But if the critical case takes place (y=i)

then it is necessary to analyze the relationship/ratio of parities

*(A,) and W(AB). Parity "t(.4,) is determined by simple summation over

the binary modulus/module of the values of parities *4(MA) of number

MA and parity ( of corrective term

((A,)=( (A).t -W (fi. .)) mod2). In terms of value tp(Al) and 2n-I can be
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metermined valua N, and, if occurs situation .< r-- I or

N' when value WI(e) it is immediately determined, at the

output/yield Vt appears the indication, which of the values z.1 or

"* is unknown.

Page 362.

N' Pn+t - I

if occurs situation N'= 2 then is produced sign/criterion Vs,2

and than indication about validity Un.i or P,+j is reaoved/taken from

the output/yiell r.

Fig. 6.47 lepicts the block diagram of the full/total/couplets

unit of positional characteristics for the parallel version. The

total time v1 of the definition of the minimum trace of a number in

the noncritical case will be defined as

r, = (k + 2) ro, (6.27)

and in the critLcal case

= (k= + 3) "rc. (6.28)
Here

log, (a- 1)+ Ik k>log(n- 1).

Total quantity N, of tables there will be the order

N ~- 2 (2h - 1) -+- 5 = 241" 3, (6.29)

since i quantity of tables during their organization in k of

steps/stages is equal to 2k- .
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CC7 A4e R F(cc) $A '

mod pq., mod P,., mod

4,A,

Fig. 6.L&6. Thiri group of the equipment of the unit of the positional

characteristics of a number.

Page 363.

As the illustration Fig. 6.418 gives the block diagram of the unit of

positional characteristics for the case of ten bases/bases

n+ I = 10.

Here k-3, whence rt5o r2 =6r 0 and N. 19; as this follows from

(6.27), (6.28) ind (6.29).

The unit of positional characteristics, computing the value of

the minimum trace of a number, simultaneously serves the purposes of

the checking of the correctness of a number, since by the simple
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comparison of value S* with the value of the digit of a number on

basis/base p,+ we determine its correctness, in other words, the

presence or the absence of the o.rrcr in a number.

In qeneral into the structure of the arithmetic unit, which

works on bases/bases pi, P, . P. PnI, whera basis/base pn+ is

control room, must enter two similar units; they of them, the

lefining minimum trace according to basis/base p,+,. is the unit of

check to the prisence of the error in a number, and the second, that

defines the value of minimum trace according to basis/base pn. is

strictly the unit of positional characteristics, which defines the

location of entire number in the numerical range and which realizes

the operations of positional character, such, as the determination of

the sign of a number, arithmetic comparison, etc.
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17p, ~zpna807f y !a

Fig. 6.ti7. Uinit of the positional characteristics of a number.

Key: (1) . First gro~up of equipment. (2). second group of equipment.

(3).* Third group of equipsent.

17O3Ufau"w4.i WAMi~jq peeUcmD Ha Koppemat~do
IraII0AMe,7UC- .m 00u60K OwuI60K MU17Ibnm~a

Fig. 6.L48. Unit of check.

Key: (1). Unit of the positional characteristics of a number. (2).

* Tabls of errors. (3) . Register of errors . (4I). For corrsction of

result.

Page 3641.

Io the unit of check additionally to the equipment of the unit

of positional characteristics is connected the table of the selection
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of the alternative sets of errors and register for their storage as

this is shown in Fig. 6.48. In proportion to the contraction of

alternative set from the contained register are excluded the wrors,

which cannot occur, but after the end of process in terms of the

value of error Ls produced the correction of result.

§6.6. 3n the structure of digital computers in the system of residual

classes.

Questions of the structure of digital computers are extremely

vast and by themselves are the cbject/subject of wide and in-depth

experizents. Is known a whole series of the publications, dedicated

to fundamental research of the bases of theory and practice of

designing the Algital computers of the most diverse

designation/purpose.

The being investigated in the present monograph system of

residual classes is the very peculiar numeration system and as any

numeration system, are set limitations not on the structure of entire

machine as a whole, but only to the structure of arithmetic unit in

light of the peculiar treatment of the algorithms of the series/row

of the operations of arithmetic unit.

In this plan/layout the conducting research of the structures of

a 
' =

'| .. .. ... ... ... .. .. z . . .. . - . , . . .. . .. . . . . .
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computers and salection of the optimum versions of the organization

of entire machine are fully applicable also to the machines,

constructed in numeration system in question. Even the arithmetic

unit, most dependent on the adopted system of numeration, can be

organized on tha basis of the concepts, accepted in arithmetic

devices of positional machines.

However, on the other hand, the system of residual classes

possesses, as w were convinced, the next very specific properties,

which Io not have analog in the positional numeration systems.
/

Page 365.

Because of this specific character it was possible to construct tha

so-called tabular arithmetic, not aFpli d in the positional machines.

to work out the new principles of detection and correction of errors,

and on the basis their arithmetic of errors, that also is impossible

in the case of the positional system of numeration, etc.

Therefore by very advisable ones is considered further

development of research in the region of the structure of machines,

directed toward the maximum utilization of the specific character of

nonpositional systems for the purpose of an essential improvement in

the structural parameters of digital computers, especially this



DOC =81023917 PAGE t'

parameter as flexibility. In this conne=tion it is possible to divide

all the equipment of digital computer into two groups:

,*b a first Iroup - equipment, connezted with the representation

of a number according to the independent foundations. Here can be

referred the elementary ccmponents/links of arithmetic unit, all

forms and the step/stage of the accumulitors/storage of numbers,

entire system of index registers, introduction system - output of

information.

Note. it is assumed that the system of index registers is

carried out in the nonposltional version.

Actually/really, the addressing of accumulators/storage it is

expedient to fulfill also in the residuil classes, since already in

the accumulators/storage of average/sean capacity/capacitance the

modified part of the address is congruent in a quantity of digits

with the mantissa of a number. Rence the rates of the arithmetic

processing of a number and address must be congruent, since otherwise

can be broken the balance between the efficiewy of the arithmetic

and memory unit.

Second group - equipment, connected with the operations on

entire number and with the organization of the work of all

8-,
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devices/equipment of machine. Here are involved the unit of

positional characteristics and the unit of check, the overwhelming

majority of the control system, the accumulator/storaga of

instructions, etc. During this division it is possible to claim that

the first group, which consists, in essence, from the mass channels,

and therefore, that encomFasses tte suppressing capacity of Tsar

[digital computer] on the basis of the traced in chapter 4

acquisition systems and correction of errors can be made maximally

tenacious without a noticeable increase in the equipment. This means

that the appearing failure is corrected, ani with an increase in the

number of failures machine continues correctly to function, but in

the smaller numarical range, i.e., with the saller accuracy.
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The second group of equipment, which zomnFrises, or our

calcuJlaticns, tocit 20-30c/o of enrtire equipmenz, must br- dc:-fni-d by

the krown methcds of redundancy.

In the structural/design plan/layout of very promising is

reprpsentpd the iO.9a of thq organi'zation of tb:: first group of

equipment in ths form of single machines of circuits.

Under machine zircuit is understood the equipmant of thz mass

channels of the introduction systeff - output, of accumulators/stora34-

of numbers of all forms and stecs/stages and the elementary

componant/link ofl ari4thmetic unit, which works on the ind-pnen4r t

foundation.

If wq compose each machine circuit with its local control, th~.

noticeably grows thp percentage of functionally tenacious eqam,: nnt.

Further, in the system of residual classes is very uriq~iely

solved the problem of autcmatic equipment scaling by th: intro'iiction
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of the floati-ng zangjr. rr all evic ,s/e,4uipmqrt of compute:z, ',xc~pt

arithmetic unit, numbers ca" te reFresented in the range (0, a~) on

bases/bases P1, P2, *..-

In the azithmz:Jc unit thc range of the representaticn cf

numbers r0, P) car. be sut-stantially increased due~ to th; :: inc

of the series/row of additional tasgs/bases Pn+t, Pn+2, 'Pn+nt

A Assuming/setting t'ns mantissas of operands by those rqgres,;ntoi ir

the ranqq 10, ft) unavo-Ldably we come to the fact that the eul4 of

arithmetic operations can lie/rest at the broader band. in

particular, for t1-he representation of ths result of opsraticr of

multiplication we should to have a range of the order 10, Vw), and this

means that after the admission into the arithmetic unit thenaan-issas

of operands must ba represented in the brcadsr oand [0, P), ~

pg.Then the result cf arithmetic operation is exact, bu- : IF

necessary to reduce to the form, which makes it possibl-e to transzoort

it into other divices/aquipment of machine, which use in the range

[0, 0s), for which it is necessary tc produce rcunding on the

additionally !ntroduced bases/bases.

As is known, rcundinq on basis/base Pi consists in the

reduction of a numbor to thr. form, which steparates on pi, i*e. in th.-

subtract-ion from entire numb-3r of digit on this basis/base ar1i in tlil
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livision ct: tah cbtained r 'sult on Pi.

Page 367.

On th =+ strength cf the fact that all basis of the rtxan - .

svstsm a - e mu-uualiy prime numt~rs, but a fter division o: P) i z " -

on this basis/base no lcnger interests, ths ind.1finita situations

form 0/0 arise cannot.

L:t thp r.=sult of arithmetic operaticn take th- form

A = (a, o, an =n, an+, . m),

then after the turning of rang* we obtain

A 6 n-, 0 r . .. pS,(,, a2 . ). (6.3(1)

whera 6i (j= 1, 2. m) is the binary function, which takes thc ve!,-s p4 .

6V=, if was produced rounding cn basis/base

J=o,1 if roundings was nct prcduced.

D3termination. Under the natural form of tri . representat.0n Cf i

number in the residual classes we will understand representation e_

the form (6.30), in which the mantissa of a number is

arranged/located in the range 10, O).
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Daterrnination. The turning of range w:? will call] th~e proczSs of

transition from thq rspressntatior of mantissa in the range C 0, P) to

its reores'3ntation in the range 10, 0%).

Fxcprssicn (6. 30) leads us to thp following representaticn of

entir-e num~ber

pg ... (6.31)

wherp MI mantissa of: a number.

For retai;ni-ng/pr-ese-rviny/mairtaininrg the greatest possibli

accuracy of a number in represpntation (6.31) the value of mantissa

must be limited from belcw in such a way as to make impossiblc3

further decrease? ot ordc-rs, ir ctler words so that would occur 'he

c ond it-4c n

PM+jM >a,, (6.32)
=1, 2, .. m

Determination. Under the floating point number representation in

the residual dlasses we will understand thp repreqsentation, which

satisfies condition (6.32). In cther words the mantissa of a numb-c

of normal form must satisfy the insqualities

-5M<&P.(6.33)

Page 368.

For the regulated system cf bases/bases value j can be selscteli 4rnn
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set 1=1, 2, ... , n, r+1. Howevar, the s ?t of the pcssinle val'ves I

can be abbreviated/reduced, takinc into accourt the fcllowing

considerations. Number A is represented in the expanded range 3n

further bases/basrcs P,+j (=I..,m) only in the arithmetic unit. In

the remaining devices/equirmErt cf machine the mantissa is

represented only on bases/bases Pt P2. -PnI therefore selection j=n.1

is unsuitable, since this will hinder/hamper th-4 determination off "i-

fcrm of the repressentaticr of a rumt-r in these dsvices/equipme':nt.

From the rcemaining possible values of j it is expedi4ant, to se:lict- t~el

greatest value of j=n, sirce in tHiS case the condition

< (6.34)

satisfies a great quantity of the pcssi4ble values 11, antd also,

therefore:, mcre rarely appears need In the numbpr normalizaticn.

if artira numserical ran~ge 10. ,P) is df.com posed on p, irtz-rvals,

then condition (6.34) is equivalert tc requirement so that t:hei

mantissa of number represented with a floating point would be placedr

in any interval

except the first, for which j0O.

Continuing the dpvelcpment of the form of the representation of

a number -examin3d, it ~spossible tc construct the new typmu of '-he:
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arithmatic unit, which uses with the inta*jers, but automatically

which corrscts the value cf the range of the representaticni of

operands and result, i.e., here frcm the concept of floating point w~e

pass to the concept of the ficating rangJe of the represental-ion of

numbers.

Page 369.

§ 6.7. Pri-ncipl::s of the construction, of the combined

discrets-continuous dpvicis/equipiront in the system of residual

classes.

An increase in th accuracy of digital ccmputers is 4iied n

essence, by the permitted value of discharge nets of machine,ie.

by a quantity of equipmant, while the accuracy of analog computers in

many respects is determined by quality, in other words in the

precision of equipment, in connection with which accuracy into :-hre':

or four accurate sign of rssult it is considered for them as th,

sufficiently hig~h.

very essential is this factor, as the universality or Ii.ital

computers, i.e., the possibility tc solve the problems of differen:-

classes without the equipment reccnstruction cf machine.
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The advarntiges of the digital compute-cs over analog cncs ar2

such essential ones that deficiencieas/lacks their, such, as a

quantity and thz overall sizes cf equipment, the high required

powers, the longer time of the solution of prcblems, the proloa.j-ed

preliminary preparation cf tasks fcr the solution, high qualifilcation

and relatively lar;',-r sta'Ff of ',he service personnel, do not

interfere with digital ccaputers tc successfully compete with the

analog ones almost in all figelds cf application cf the latt-r.

Is hlenos clear interest in the rescarch of discrete- cont i-uous

typq hybrid constructions/designs, which, supposedly, could jcir

advantages of both types of machines, but namely ensure the hi'1Th

accuracy of the solutions of digital computers with the inhseren't 4ir

them rslatively low requirements for the allowances of th.? utiliz::d

parts, simplicity, compactness, efficiency/cost-effectiveness, Spe-1

of obtaining result and with the crganically inherent in ana*lcj

computers ability to work in real time.

It is logical that, remaining in the analog tachnology at the

level of the ordinary representation of numerical values and iiagramn

of the solution of problem, we can increase the accuracy of thi

solution only due to the considerable decrease of an error in the

equipment, whica 4.s possible in the sufficiently limiting 14trts.



DOC 9 1023918 P AG E 4/

Thsrefore for ar increasc- in th~a accuracy of the soluticn t is

considered by advisable tc find this form of the representation of

numerical values, when each value from the fuUl/total/complite r-arge;

is represented by thq set of numbers of th-3 small numerical rangas.

Thenr, treating individually ?ac1 value of a sffall range on the

maximum scale of devicta/equipmc-nt and composing at the output/yfi"Al

the rssults of processing, wp cbtain a considerablep increasa in 1-h-

accuracy of computer operaticn.

Page 370.

one of similar methcds is the so-called "stretching methcd"l,

which p~ovides for the separaticn of input data into thei irdivi,!ual

parts and processing each part individually in the maximum ran3p of

device/equipment.

However, this method is also limited from the point of view of

obtaining the high accuracy of result. A most essential

deficiency/lack in this method is the need for the account of tiie

connections between the individual Farts of the workable values 1with

the -zxacution of operation.

In conncection with that presentead for solving stated problin of

it is expedient to take th.is form o4f th-: representation of rnmri4ca
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valups, when an initial number would be represented by the s=t of the

not connected numbers of small ranges. As w already could he

convinced, this requirement satisfies the system of residual classes.

Actially/r-ally, since the remainders/residues on the differeat

bases/bas:s arR not connectod, ther- is no limitation, suprimoosrd

by the need for considerirg the ccnnections between them. Since the

result of any rational operation abcve 9,ach digit of the number,

represant.d in the form of reainders/rvsidues along the sslected

system of bases/bases, itself is r.mainder/residue on the same

bases/bases, then there is no need for scale change in resolvinj

task.

Lt us suppose we should tc solve some task (for example, fi r d

the solution of the system of differential equations)whose numlnrical

values are changed in the range 10, dP).

The participating in the solution of proUles numerical values

are represented in tha system cf residual classes with range 10. T) in

the form of the remainders/residues
a., , . ., a

on the appropriate bases/tases, each of which is treated on

appropriate ele-mentary aralcq uni tAV(modp,), AY (modp 2 ), . AY(modp.), 3,

this shcwn in Fig. 6.49.
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Thus, treating independently values, greatast of which dcas nct

exceed Pn, actually we use with the valuie, which 1les in the range

[0, 1).

As lc.g as the problem is not coml-ately solved, the drsc_b=!

work can be produced indeFindently fcr each of the analog units

AY(modp,),AY(modp 2 )...,AY(modp,), ranges cf which are Pi, P . P,,

respect ively.

Page 371.

It is logical that the input values also are represented in th-

fcrm of remainders/residuqs on bas-3s/bases P1, P2, Pn and in this

form enter th= input cf the aralca units Vkhl, Vkh2, ... , Vkn. h. .

processing numerical infcrmation in each of the elementary analog

units is complatad and will ccme up the question about the output of

result, output device VU, after cttaining the value cf outpu:

quantity in the form of remainders/r.siiues at. a:, .. au, relating to

one and the samm moment cf time, ccnverts on cna of the msthcds of

transition from residual rumbers tc the positional numeration systm

th . cbtained rasult intc a positional numbar and it will transmit it

to the output/yield.
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The procedure cf readout indicated can be carried out as -nany

once in ths tima, as is required according to the conditicns ef task.

KThus, the incoharence between themselves o.4 reainders/rs.]'i--s

7 on the differenc oases/bas~s srsurqs ths carrying out of

computational process in the free devicas/aquipment, whIch work or. I
-the different basqs/bases, and the noed for the transfcrmatic.- cf

41 -asult 5int-o its pcsit~cna1 form of ropresentation appears alrad~y cut

of the qlementary computers.
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-o' 'd 7

A Y

fmod 0,) '

FjQ* b.49q. Block diagram cf (Vascrete-contirluous 3evi-ce/eauirman:.

* Key: (1). input. (2) .output of result.
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Thus, although each cf the devices/ecluipmqnt must have for thz-

corrtct detarmination of thq value of numerical value only accur-acy

of order I Vi= 1,2 2..n), nevertbe lsss under these condi ti ors out p u1t

result will be latarmined with an accuracy to value

I I

in other words if it proves to be possible to organize

elementary analog units, each of uhich works enmodulus/mcdulia pi,

then is opgned/5isclosed the Fossibility of the construction of the

analog system, which works with ar~y preassigned accuracy.
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la this cAt th&- growth ruf the- acc'uracy cf this aralc, svi3-e?.

will ba producel ais in the digital comput-rs, only due to ar. incrcass

in the quantity relative to ncr.~recision equi~mant - the additiz:n :)f

certain uiartity of qlfrnentary analcg units, which wcrk in

bases,':)ases Pn+i, Pn..-.P'k-t bv Tutually s-.ample ooth between

themnsrlves anrd wi th' Fr4:vicuis1y Sre1ic-tq bases/basas.

Passiny in th? Plementary analog unit 'to thq work on basis/bas.?

Pi, we build-in into the %crk cef this- device/equipmant, the

alemart/cszll of discret-r.- ss, whiAch consists in thc- reaquirtErnc c-

the intsgrality (taking iJrto acccurt scile) oftevleof- nt-r

at this integral (taking into acccunt sca le) value cf arg umen t.

A simiilar iiscreteness is equivalent to Substitution by rurved

broken line, th2 n~arf-r that aF~rcaching curve, the less thz

steip/pitch of sesparatior 6x.

In other wirds, after assigning the reguired accuracy cf th

representation of the curve y=f (x) , always it is possible to firni

such step/pitch of separation bx, with which the values of functic.

at fixe3d/racori~d poi.nts Xt, X2, .,Xg are known to us with the pr.:se,:

accuracy*

in this sansA thp discretenpss of curve cali be tr;:ated as
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follows. We fix/r-cord the points at which the values if fdnc--)i i:1

known to us with tho prsset accuracy. Between these points the

function varies continuously, but we do not have information aazut

what values it taKes. The assignment to function y=f (x) , for -xamp' =,

of basis/base pi also does net break its continiity in the ran - 3

10, pd, since the la:r is eui..lento th- aralle. trans slat i-c -

the axis of abszissas to values p,. 2p,, 3p ..... respectively.

. Page 373.

A similar assignment to function ersures correct work of el.onentarv

analog unit with the execution cf rational operations, that as tnz

latter they are performed by analcg unit for each point oi uvr, a -:1

integral (to scile) result is remcved/taken, at those values c-:

argument, at which are determired the fixed/recorded points of " In i-

function (integral). Since in tie system of residual classes iny

rational cperation is acccmplisbed accurately, then at the fixea

values of argument the result cf ary operation is obligated to bi

integral and deviation frcm the irtegrality can be caused oniy by a

equipment errcr in the device/fquipment. Therefore with the 1v4t-

of result from the intecer value at the fixed values of arium3n- as

the accurate value of result must be aczepted near integral (t)

scale) value.
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If elqmentary analcg units haye a range cf a change i- val'i-s

and one of them works on tasis/bas . pi. then weight m of unit

interval will b- d-fined as m=-. If wa prcceed from thp fact that
Pi

is permitted an error ir result cr the order cf 1/3 unit intervals,

then the oermissible relative -rrcr 6 can be evaluated as
6=-3 %

Then when selectina cf bascss/tases among mutually prime numbers

3, 5, 7, 11, 13, 17, 19, ;3, 39, --1, which clcse the range

S1011.

it is pcssible to rise the elementary analog units whose resultini

accuracy the order

1 -- 10%.

Page 374.

If under the price cf t.e unit of range 1. we will understand t. h=

ratio of the value cf numerical K-hand the rarge of a chanrge in tho

electrical parimet.trs of device/equipment D, then in th3 case Of

using ore device/equipment fcr the work with r.umerical values, which

lie in the range 0. 0) we will cbtain the pric. of the unit of the_

range M,=--

and in tho cas. of werk cn bases/bases p,. p. p, for ind -D.n .- t

foundation P, de obtair

D

l . . 1
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whence it fcllows that the price of the unit cf range is -scucnc

WI1 .9D

Ai- l Pi times.
1= |

L.- t b, now preset func+-icn S (x) cf the fcrn
S(x)= ' akfh(x), (6.35)

where aA- whole nor.-negativi numbers, and [- continuous

functions, which takp the integral (to scale) values at the int'gral

(to scale) values of the argufert

xt , X , • . , m

moreover
Xm Xm-2 =XXm2XmZ= •=x 2 -x.

On the strength of the fact that (6.35) is correct for all x it

is possible to write

S (xj) = E aifh (xj) (mod pi),

where j=1, 2, ... , a, or

S (x j)= .a,,f,,,
A,-1 (6.36)

j 1,2 ..., m,

where
- al, (mod p,),

f A =f,% (xji) (mod pi).

Let us show core ctress of transition frog (6.35) to (6.26) f _-

some forms of the function fh(x).
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Let f (x) be the functicn, obtairpd under- the influence of ccrtair

operator F on. the functicr O(x), i.g.

f (x) =Fp(x).

Then unler th assumotions mad- ahcve w hava

f j.

Let us consider th? form of operator F for the operatirns r

in the residual classes.

For' the opeiration cf ad ditior (subtracticn)

fA. (x) = FI(Th (x) = (r, (xl 4 (x).

whers ~ 1 (x) an~d 0 2(xM - the f unction of operands.

on the strarvgth of the fact that at points x. x,.. v., W.: '. 3:

with ths, inte'ger valuas of functicns, the r-imainder/rasidue of- th-

sum must be equal to the sum c± the remdinders/residues of

components/terms/addends. Hence

For the operation of the trultairication

f.% (x) = F2(p (x) = (p1x,(2x.

For the intc~gr values the remairnder/residue of product, :Is J

Kn~own, it is qqual to the Frocduct ct th2 remainders/resillues : f
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For the opcration of the differip'tiation

f (x) = F~qh (X) k~()

or r-garding

AX

whera w - mernb: r of the second order of smallness.

4 Choosing alonq the axis ot ahscissas scale grid in such a way

that Ax=1 , an~d sxamiring cnly the intag:= values cf furcticrs, 4- 4

possible to writs

I it FA I)j i (XIi

For the opiFration cf the? irte-gration

fJ, (x) =Fjpt (x) (Ph~ (x) dX.

Pag 376.0

Since the integral can be represented in the form of th- -iLll Of

products and si.nce tha st~lp/pitch of integjration can be ccmbin-'u with1

the step/pitch of scale- grid alcna the ixis of abscissas, then it is

correct

Tki dx.

Thus, i's establishc-d/insta led the fact that for the oe~

examined expre ssion (6. 35) can. he substituted by exprass~cn . ~



DOC H1023918 P A G

This is correct under the done above assuMnptiCn that at thse ~:);s

the selected scali grid along th'e axis of abscissas functicn-cp;rands

accept the? stri:tly integral (--c scale) valuqs.

Lit us ccrsidar nc'w the situaticn -dhn function-opD ral-ds 6 en-2

'A. und's: thc zffmct of some factors deviated ty values e~a,, e.

from ttneir irteqjer values. Since the result must be integral, ta,1r. it

is rnocsssary it to ccrr~ct, aftr rslating to tha nearest inteq--r

valua. Therefore, obviously, errcrs i n f uncti cn-operands and error --

the Jvice /r-quipment, which performs abovs them th-e or-sset cperatio:-,

must be in this state that the result would be obtained near ths true

integer value, and then at the cutput/yield of elementary airal:o

circuit must bz- connected the- device/equipmnent, which corrocts tha

value of output function at ;c-irts xj, x2 . Xm to the nearest int =-ga:

value. If series- connec ted seaveral alemintary analo] units, than.

compensator must b:? connected only in that place-, where accu~ulatpd

error for result, whiJch is obtained due to an inaccuracy in th,=

previous devices/equipment, becomes close to the critical.

As thi illustration, let us consider the integratian of linear

diff3r~rtial nquation with t:he constant coefficients.

Example. Li~t us con~sidsr work of lth- elementary analog unit,

which has eirror not better than 1c/c, the realizing the sclut-;;o-
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dif: rntial Flquati cn
ax
W i (6.37)

with th-s initial condition x (t=O)=x, with an accuracy to k sigis.

F:or 41uarantesing the intr-irality or ar'juient let us introic-

tho scil-4, tdt:nnd frcm thr- corli-ion

Pagp 377.

Th'-n thp raag:e cf a chanqy9 of thp arqumaent to scals is

represented as 10 mItr).

Lqt us introducs scale Wh. ensuring the integrality of funct-i-

in th* pre:set rangim of arcurnent, in thi form Al. for obtaininj th,

accuracy in k of decimal Foirts afterr comma. Let us select

bases/bases Pt, P,...' pn trcm the ccndition

Then the initial conditicn

can be registered in the form

X = (X0 1. -r~..

To solve aquatio n (6.37) we will be cn all n to bases/tas-s in

parallpl, for which it 4-s necessary to have n. of the elcimenr.ary

analog units each of: which works cn their basis P, (i = 1. 2.nwis
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initial cordiTio xoi.

Detarminati-on. Subsequently thr- solution of initial squaticn fi~r

basis/base pi we will call th~e prcjection of the solutior by this

basis/ba se.

Let us consid:er the functioning of the device/equipment,

represented in Fig. 6.50 en basis/basP D with initial con1-ion

xo X0 ~a from [roment/toraue t;. The delay tim:? cf the integratinvq

componenrt/lInk let us d-sigrate thrcugh r. deriz IZ d-isigr.atcs -h

slem-antary intsegrating co wpone t/ lin~k, KU - ccmpensator, V 4

tube. ~In ths tima intervallti, tL -V~output strpss/voltagp wJl 1-0

x,- a.

in interval [tj+T, ti+2Tr) we will obtain

-=a (I + (t- ti)-T)
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.10

Fig. 6.50. Bic: diagram cf the intsgrating device/equipmet.

Kqv ( • utput.

Page 378.

For i-itervil It, -2T, t: - 3) wr will obtain

., (t-t) 2

x3=a( -- )( +(t-t) +a 2t -

For intervl [t,+--3T, t,--4r)--

x,=a(I--) (i+(t-ti) ) a

For Interval It,-nT, t,+(n-I)T) we will obtain

xn+t=a(l-T) I +(t - t) t- i 2 + "' !)

(t- ti)"
at n!

khence

x + = a (I - T) e'-ti + aT (t- t __
n1

iith an accuracy to the value of the remainder

R,
wher

0< e<.
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1C3mz.cnsator in this case at each fixed/recorded mcment cf tin,-

ensures the intagrality cf result that it is equivalent to task at

this moment of the time cf the exact initial values, which -:-xclule

the prehistory of the wcrk cf device/equipment.

x = a(10 ell-rac 1 + a(I- rR,. (6.38)

Let us now move on to the- numerical computations. Let tha

4initial value of functicr be is preset as by x(t=0)=1. We will F: ek

the solution of equation (6.37) with an accuracy to four sigrs in t~l

rangs of argument [0, 1).

Then Mx=IO4 and the solutiocn will take the form

x = MeMf

wherce the in-iti.al value cf function (to scale) X0 =1O'. Let us --=l!ct

the step/pitch of argument equal tc 0.01, then with the- intrciuc

scales argument varies in tho irterval -0, 10C) with the ste:p/pftcr.

At=1, and function - in the irterval [10'/, 27 1,33).

Page 379.

Let us select the system ot the bases/bases: p, II, p2 12. P3= 13 , p. -17.

its rangs r ~29172>271&3. we ccm~ute the values of the orthogoral ass

B 1 ~2652, BZ 17 017,.B 8= I 22U. 5, = 2 4~6
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Initial condition 4ill b* Trqiser:-d as ,- :(1,4.3.4). SCal o

argument Mt=(1,4,9, 15), the scale of function . 1,4,3,4).

Ech value t is accompanied ty coefficient Tire re

1=. 4, 9., = o ,00 .- c- U .5). I=

o, 0, 0, 0) :0 ,,H k > 2.

Key: (1). iit..

considering that r<<t, we will cbtain valua of x at point t 1 =1:

xt (mod p) =3, xt (mod p2) -9, x, (mod p3) 0, x(nod p;) 3.

which corresponds in the deciaal system to the number

x1 =3B1 +9B2--3B= 10101

or taking into account scale x 1 -- ,oiOl.

After the zarrying cut ccrrections we pass to the point r=2,

where we work with the rew initial value cf function x0 -=(3,9,0.3). ? r S

each value t is accompanied by the coefficients:
M,

=(2, 8, 5, 13) =200, v" - (2, 2, 2, 2) =2.

M (0, 0, 0, 0)=0.

Then the value of fur.cticn x at the new point t2 is defin" as

X2 (modpj)*--, xa(inu pu -2, xIhu& p3J- 10, x2 knod P,) -2.

Whence x..(5,2,10, 2)= 10 20 2 cr tc scale x=l, 0 2 .
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Thus can be obtained th'e valu'?s of ths unknown function. i- c~azr

values of argumsrt.
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Page 380.

Chapter 7.

SYSTEN OF RESIDAL CLASSES IN CONPLEX D)NAIN.

Ia his fauous "arithmetic research" K. F. Gauss builds-in into

the examination zomplax integers a+bi, where a and b - whole real

numbers, ani is zonstructed the theory of comparisons for complex

integers. We is presented further, following Gauss, some necessary

for future reference questions of the arithmetic of such complex

integers. Everywhers further under a complex number we will

understand complex integer, if contrary will not be in a special

manner stipulated.

It is easy to see that the sum, difference and product of two

complex integers is alsc complex integer. Let A=a~bi - certain

complex number. The numbers

(-1)=-a--bi Ai=ai-b, 4(-i)=-ai+b,

the obtained by multiplication numbers A respectively on -1, 1, -1,
the Ah rasspectively * o-,i-i

are the associsa with A numbers. Number A, formed from A by

.. ..... ..... ..... ....
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replacement in it i on -i, is the conjugated/combined with A nusbae.

Value

is called the ancm of number A, and also number A.

Page 381.

4. A complex aumber will be called prime complex number, if it

cannot be represented in the form of the product of two complex

numbers, different from unity. Otherwise it is called a

composite/compound complex number.

From this iet-rmination it directly follows that

composite/=ompound real number is also a composite/compound complex

number. Reverse is not always correct: simple real number can be a

composite/compoaad complex number. Thus, for instance, 2=(I4i) (1-i).

IS analogous, any prime number of form 4k+1 (k>O) which, as is

known from the theory of numbers, it can be decomposed on the sum of

two squares, it is a composite/copound complex number. For exaspLe,

29=4.7-I=(5-2)(5--2i); 37=4.9-I

= (6 -, i) (6- i) I IT. a.

Ky: (1). and so forth.
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As far as numbecs ire concerned prime of f3rm 4k+3, then they cannot

be represented in the form of the sun of two squares and theref~re

they are prime complex numbers.

For complex numbers can be isolated some concepts, intarent 1i

whole real numbers, for example this important concept as parity or

oddness. Here as the composite "pair" comes forward a aumber 1+i. rho

complex number a+bi is odd, if it is not divided into 1 +1 i. The

complex number i+bl is even, if a and b are a van; in this case it is

always divided into 1+1i. Besides these two classes of complex

numbers is an intermediate class cf the numbers, which separate on

1+i, but which have a and b - odd numbers. This intermediate class

Gauss calls semieven complex numbers.

For of ths introduced thus complex integers occurs the theorem

about the uniqueness of the disintegration of a composite/compunda

complex number into its simple cofactors.

In accordai:e with this here, naturally, is defined the concept

of mutually priie complex numbers as such numbers in expansions of

which into the simple cofactors there are no common factors, besides

unity.

L-k-a
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Page 382.

§ 7.1. Comparisa complex integers.

Tie complex number A=a+bi will be multiple to the complex n'1mber

t=p~qi (or m it will be the divider/denominator of number A), if the

quotient A: is a complex number t.

FOOTNorE 1. We recall that under a complex number we always have in

mind complex integer. ENDFOOTNOTE.

In other words since

a-ht (a- bt)(p - q ao-bq bo-aQ

that A: will be iateger in that and only when

ap - bq 0 (mod p q2 ), (.)

bp - aq 0 (mod p' - q1).

If (7.1) it is not performed, then A is not dividal into let

S=a fi be such, which A-S is divided into , tham it is possible to

write that

A = S (mod m), (7.2)

or S is deductia A on modulus/module m.

'-5--.
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Example. T: iatermine the fissionability of numbers 1=17+7i,

m=3 2i. Here pZ+3=9+14=13; ap+bq=17*3+To2=51+1
4 =65;

bp-a1=7 *3-29 17=-1 3.

Conditions (7.1) are satisfied: 65=0 (mod 13); -13=0 (iod 13).

Theorem 7.1. Let A=a+bi, m=p+qi be performed the comparisoas

ap + bq xp -r Yq (mod p2 - q2),

bp - aq yp - xq (mod p2 + q2). (7.3)

Then

= x iy (mod ;).

Page 383.

Proof. We iivide number ;-(x+iy) into

A-(x+iy) =(a-x)+i (b-y) (a-x) P--(b-u) q
m P -- qi p2-_q2 -t

+ (b-y).p-(a-x).q .
p2+ql

So that as i result of division would be obtained a complex

number they must take the place of the comparison

(b-x)p -(b-X)q O(modp 2 -q)

(a- x) p- (b - y) q 0 (mod p2  q2).

*b - )p -( - )q =0 ro : ")
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which oere equivalent (7. 3).

Thus, with execution (7.3) number x~iy is the deduction of

number A on modulus/module a.

Although for complex numbers are not determined the concepts

"more" and "it is less" however it is the possible to determine the

concept of the smallest deduction. The basic idea of this

determination IL.s in the fact that since the determination of

composite deduction is based on the system of real comparisons (7.3),

then, after requiring so that xp+yq and yp-xq they would be

respectively smillest deductions cn modulus/module pZ4qZ, we will

obtain completely specific complex number r+iy, which it is logical

to name the smallest deduction of number A modulo a. In other wrd3

it is assumed that
V ' ,,. . ' 1

yP- xq < P2 + q,-

In this case should be distinguished the smallest deductions and

the least positive residues. In the first case it is assumed that

xp+yp ind yp-iq are positive integer numbers, exceeding p2+q 2 -1. In

the 3econd case it is assumed that these values can be both positive

and negative ones, but those not exceeding in the absolute value of

number pzt q2 /2.
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If are fou-l the smallest deductions of expressions ap4bq ani

bp-ag

r = ap -L bq (mod p' - q2),
r --bp-aq(modp--q2 ). (7.4)

then the smallast leduction of number A on modulus/module 'm is aqual

to
x--iL=Y rp-r'q r'p-rq (7.5)

Page 384.

Example. ro determine the smallest deluction of number A=15+2i

on modulus/moduls ;=3+2i. Let us write the system of comparisons

(7.3) under conitions of the example

49 - 3x -2y (mod 13),
-24 - (mod 13).

Hence we obtain thi equations

3x - 2y = 10,
-2x +3y = 2.

S3lation 3f this system gives x=2, y=2, i.a., 2+2i there 13 the

unknon smallest deduction.

Example. Ualec conditions of the previous axample to find the

~least positive rasidue. System of equations for determining of x and
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y in this case will take the form

3x -2Y = - 3,
- 2x -3=2.

The solution of this system will bs x=-1, y=O, i.e., -1 unknown

least positive casidue.

Tha properties of comparisons for the real region extend also to

* complex domain; therefore we on tbem stop will not be.

If complax numbers are not mutually simple, then they hays

common divisors. Here also it is possible to introduce the concept of

greatest common livisor as common divisor with the greatest norm. rhe

process of the letarmination of the greatest common divisor of two

complex numbers At and ; 2 is analcgous used f or the determination 3f

the greatest zoiaoa liviscr in the real case.

§ 7.2. Fundamental theorem of Gauss.

Now we approached one of the *cst interesting and important

questions of thi3 theory complex integers - to the determination of

the zliss of th3 smallest deductions ani this connected with theorem

of Gauss about the isomorphism between the sets of real and complex

numbers.
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Page 385.

Determination. If two sets it is possible then mutually

idetically is mapped one to another so that the specific in them

relationships/ritios during the representation would not be broken,

i.e., if to 9aza slement/cell a from set X it is possible to mutually

unambiguously relate element/cell a from set X, then so that the

relationships/ratios, which exist between any elaments/zells

a,b,z,1.. from X, would occur, also, between equivalent components

a,b,c,d... from X and vice versa, then these sets are called

isomorphic.

In the previous paragraph we established that the smallest

deduction of any complex number a+bi on the ccmposite modulus/module

p+qi is determied, on the basis of the system of two real

comparisons

ap -,bq r (mod p- -q"),
bp - aq r' (mod p2 q-rq:),

where r and r, - smallest posit ve deductions on the real

modulus/module 4=p 24q2 . Since for r and r' are possible values of

0.1,... N-i, then it could at first glance seem that the smallest

zomposite dedu:tions there can be V, the obtained during different

combinations values r and re. However, this not thus. Values r ind r'

are not not dep-aled. Between them there is a specific connection,

... .. * -. .. ...... - ... . ..
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which sets in the conformity to each possible value of r completely

specific value r'. Let us establish this connection. Multiplying the

first of comparisons (7.6) on p, and the secord - on q and by

subtracting th3 second comparison from the first, we will obtain

a (p2 + q') rp- r'q (mod p2 - q-)

or

r'q - rp (mod p- + q2 ). (7.7)

If p and q - mutually prime numbers, then comparison (7.7) has

one solution

r' tr (mod p2 --- q2),

where

p ' -j- 0 2)

q

moreover z is such that t - whole less than p2+qz.

Wa illustrite the aforesaid by an example.

Example. To latermine all possible pairs of values r and r, with

modulus/module peqi=3+4i.

Page 386.

Since 3 vil 4 mutually prime numbers, then in this case and

comparison (7.7) has a solution

43+1.25
4

........ - .._._...A ll
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7r (;nod 25),

which determines the following pairs of values r and r'
(0, 0): (I, 7); (2, 14);

(3, 21); (4, 3); (5, 10): (6, 17 : (7.24): (8. 6): (9. 13): (10, 20); (11, 2):
(12. 91; (13. 16): (14. 2,): (15. 5); (16, 12) : (17. 19); (18, 1); 019, 6);

(20, 15); (21, 22); (22, 4); (23, 11); (24, 18).

The consid~r-tions presented feed as to the remarkable theorem

of Gauss.

Theorem 7.2. (Fundamental theorem of Gauss I). On the preset

composite modulus/mcdule whose norm is equal to N=p 2 +qz, also,

for whi:h p an: I i re mutually prime numbers, each complex intager is

congruent with ine and only by one deduction of the series/row

0, 1, 2, 3,. . N-1.

Proof. It is known from the theory of numbers, that for two

mutually prime numbers p and q it is possible to find such two

integers u and v, that
up - Vq 1. (7.8)

Let us write the easily checked identity

i=uq - vp -- m (V + ui). (7.9)

Let be is liven the complex number a4bi. Let us rewrite it,

after replacing i from (7.9)

a - bi = a + (uq - up). b + m (vb - ubi).

Let us designate through h the smallest positive real deduction

of number a4(uq-vp b on modulus/module N and let us assume that

a-' (uq - vp) b = h + sN = h ± s (p + qi) (p - qi) -

= h mz (ps - qsi).

a ... . . . .. .. . . . ..... .. . . .., ,'-: ,,. - - ,, ll ._,_...L. .r l : - " "
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Then vill be performed the equality
.. a --h = h - m (ps --qsi) - m ( ,b - ubi) =

h - 1 n PS - (ul; - qs) il

or in the form of the comparison

a --,bi - h (1od ,). (7.1 )

Page 387.

By this it is proved that a4bi is congruent with one of the numbers

0, 1,2o.o M-1 in modulus/module i. Let us demonstrate now that this

number is unique. Let us assume that oc:ur two comparisons

a - bi h, (mod iz),

a - bi h, (mod in).

Azcording to the property of the comparisons of number ht and h2

they are congruent between themselves in modulus/modul. a, i.e.,

h- h2 (mod in)

or

h, - -h -0 (mod M),

i.e.

From (7.11) it follows that will b3 carried out the equality

(h, -hz).(p- qi) = .V (e - fi).
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which is equivalent to the following two real equalities:

(h, -h,) p = Ne, (7.12)
(ft-h 2)q= -Nf.

After multiplying first equality (7. 12) on u and the second on v

and after formiag them, we will ottain

whence, taking into account (7.8) *it follows

4 h-h,= N(eu - L)

or

Since by hypothesis ht<N and h 2(<I, than (7.13) it is possible

only in the case of h1 =h2 -

Thus, is rejected the possibility of the existence of two

numbers h, and hz, smaller N which they would be congruent with a+bi

in modulus/moduLa a. There is only one such number which is

letermined from the comparison

a--(uq - un) )h (mod.V) (7.14)

or ~a +bp~ h(mod N).

Page 388.
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This theorem sets the isomorphism between complex numbers ini

their real dedu:ti~ns, determined by form indicated above.

DetqrinatLon. Expression uq-vp, by means of which is

establishel a =icraspondence between tha composite and real dedaction

on modulus/module p~qi, let us name the coefficient of isomorphism

and let us designate it through p.
.

Example. T solve compariscn 16+7i-h(mod 5+2i). Since (5.2)=I,

condition of tiaor-m 7.2 is satisfied, therefore, there is a

full/total/compLets system of real deduztions. Here the coefficient

of the isomorphism of modulus/module 5+2i is equal to

p -,,q--up- -2-2. 3=12, raKI'aK up--vq=.5-2.2=l.

Key: (1). since.

rherefore 16+7-12=h(mod 29), whence h=13 (mod 29). Consequently.

16+ -' 7 13 (mod 5-2i).

Relying on this theorem it is possible to show the validity of the

following: let for two numbers A,=a1 4bli and A2 =a2 4bzi there be su:h

hie hz, ht an1 hx, that

A, -h,(mod r), A-=-h2 (modm ),

A, L, ±A 2 ht (mod t), , -A -h. (mod n);
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t hen

h± h, h.(modV), h,, h, h/2 (mod N),

where NI - norm :.

Lit us return to comparison (7.7). Until now, were examinel the

solution of this comuparison and the theorem of Gauss under the

condition when p and q -mutually prime numbers. let us consider the

now general casa when p and q. and therefore, and N=p24q2 have common

factor.

F Page 389.

Let us designate it through d. We obtain p=ed, g--fd,

N=(e*..f2)d2. in accordance with the theory comparison (7.7) in this

zase will have I of the solutions of tha follcwing form:

N d )N(o N

... ,r' c+ (dIN(mdV, 7.5

whers x<(W/A satisfies the comparison

fr' =-er (mod (el+f2 d), (7.16)

in which is alceady carried out the conlition of mutual simplicity e

and f and solution of which is obtained by already known path.



DOC = 81023919 PAGE

Example. T3 determire all possible pairs of values r and r* with

p+qi= 3+6±.

Comparison (7.7) under the conditi n of an example takes the

form
6r' - 3r (mod 45).

Here the common factor d=3. Comparison (7.16) is such

2r' = r (mod 15).

This comparison has a solution

r' = 8r (mod 15).

Thus, we have tie following three groups of the solutions:

r' Sr (mod 45), r' Z ' - , . r' z - 3. ;S 1, 6 "

Let us give the table of all pairs (r',r).

the Ist group

(0, 0); (1, 8); (2,16); (3, 24); (4.32); (5, 40): (6. 3), (7.11), .

(9.27); (10.35); (11. 43); (12. 6); (13, 14): [11, 22)

the 2nd group

(0, 15); (1, 23); (2. 31); (3,39); (4. 2); (5. 10); (6. I8): (7 26 1; 3 34;

(9.42); (10, 5); (11, 13); (12. 21); k13.29); k4 4 7,

the 3rd group

(0, 30); (1, 38): (2. I); (3, 9); (4. 17); (5.25); (6.3 1: ( . 8
(9. 12); (10, 2U i. 2 .121, 1 . 7

- ~ ~ . ... mhi~miiml~m~r~ii
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Just as ia the case of mutual simplicity p and q the total

quantity of differ~nt ones vapor r' and r is equal to N.

Lit us formulita now the theorem of Gauss in general.

Theorem 7.3. (Fundamental theorem :f Gauss II) . on the composite

modulus/module lzp+qi whose norm N=p 2+qz and for which p and q has

the greatest cozmon divisor d>1, each complex integer a+bi is

congruent with deduction x+iy, which possesses that property, what x

is one of the nambers 0, 1.2,... N/d - 1, and y - one of the numbers

0, 1.2,... d-1, iorgover only with one only of all 4 of the

dedutions, whi:h have this form.

Page 390.

Lit us not3 that for the modulus/adule with the not mutually

simple components no longer occurs the isomorFhism with real numbers.

Here the theorem of Gauss sets the smallest deductions of numbers

a~bi in the form of the complex numbers x+yi whose components do not

exceed in the value of numbers d and N/, whatever numbers a and b.

This fact is also very essential.

A&i
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vilues x i1 y are detprmined from tha relationships/ratios:

b y(mod d).
.(uq --_ ),P) b- y o (7. i7'

up - vq =d.

Here also it is possible to examine not ths smallest positivPe

deductions, but the least positive residues.

Let us consider the execution of arithmetic operations in the

class of the smallest and least pesitiva residues. Let us turn to the

fundamental theoram of Gauss. In accordancs with the

established/installed in it isomorphism to each composite smallest

deduction x+iy on modulus/module ;=p+qi corresponds the real

deduction h on 2odulus/module N=p2+qz. rhis real deduction is

computed from the formula

x (uq-vp). y= h(mod.V),

where u and w such, that up+vq=1.

Example. T3 13termine the real smallest deductions, which

correspond to z3mposite smallest deductions on modulus/module m=3+4i.

Here u -- I, v=I, uq-vp-=-7 -3-'-3i - I.-3--4, - 19.
-2-2i-9. -2-3i--2. -2-74i-=0O, -2--.5i- 13, -- 1--17.
-1 -2t-10, -1--3i-3- --- 2i-21, -I-5i-14, -1-- 7,

O-Or- , ,-18. 2i -II. 3i-4. 4-22. 5i- 15.6i-8. 1+--2i- 12.

1--3i - 5, I-41 -23. 1-51 - 16. 2--31-6. 2-4i -24.

In accordance with the results of an example can be constructed

L-L Aw Woe"
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the table of isomorphism.

Analogous tables can be constructel, also, for the operation of

addition, multiplication, formal division ind generally for any

combination of rational operations.

The adjusted by the theorem of Gauss isomorphism for the

modulus/module with the mutually simple components makes it possible

to replace the execution of the rational operations above the

smallest composite deductions executing the same operations above the

corresponding to them real deductions on the real modulus/module,

equal to the norm of composite modulus/module. In this case from the

technical side the execution of the operations above the real

deductions can be realized by any arithmetic units both of the

tabular type ani by adders and unstable type multipliers.

Page 391.

However, as far as modulus is concerned composite whose

components contain common factor, then in this case isomorphism does

not occur. meanwhile this does not mean that and here it is not

possible the execution of the operations above the composite smallest

deductions to replace with the execution of the operations abova

their real equivalents, for example, above the refernc - numbers from
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1 to N(N - norml, :onfqrred to completely arbitrarily these smallest

leductions. Howaver, this replacement is possiblq only with tabular

method of procedure, when the table of reference numbers is present,.

smallest composite deduction whose reference number k(k=1,

2,... ,.4). let it be further W', - - W (mod m). Then in the table

of real equivalents in the intersection of line kt with ccL1mn KL is

placed number k3 , although, generally speaking, kj kzk 3. It is

analogous for ota3r rational operations. It is obvious that the

execution of th3 operations above the real equivalents in unstable

type arithmetic units, which realize th. completely specific

conformity between k, and k2, identical for any k, and k2 , in this

case is impossible in view of the absence of this conformity which

would be performed for any k, and k2.

Thus, and for the moduli/modules with the mutually not simple

components is possible replacement in the operations of composite

smallest deductions by their real equivalents.

Ezampla. T3 make table of multiplication above the real

equivalents on modulus/module ;=2+2i.

Lit us fir3t of all determine the 3mallest composite deductions

on the modulus/module 2+21. Let us make table of multiplication foe

the composite diductions
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j2 3~ 4 5 b

I - i -- 0- 01  2 7
-- l -e;- -- ,O: t t) -u -2: 1 l - i 2:

- I ,- 0 N I 21!2) - I--1- t - ! - I-- 6-( I ,3 I 0i1--)I I3 2 I

1") 0-0i 0-oL 0 -U 10 -Oi 0-0 O - 0i 00 -- Oi 0
I4) 0-,-i 11 0-i O-Oi 1--i 0-2, -1 -2i -1 - 3

) 0 -2i 0i0 1 0-0 2i - 0-7- 2i)1 0- 0-2
6) 0-,-3i 1 £ 0-- O 1-Oi- --2i 1-2 -I - - O-

02i l-i 0+i I -0 i, 1 l--118) 1 -2 I-, I o+Oi 0+1 0-; 2i 0* I - 12

Page 392.

On the basis of this table let us make table of multiplication in the

reference numb-rs of deductions.

1 2 3 4 5 6 7 8

1 5 1 3 7 3 715 7
2 1 2 3 4 5 6 7 8

3 3 3 3 3
7 4 3 2 5 2 1 6

5 3 5 3 5 3 5 3 56 6 ,3 2

8 7 8" 3 6 3 4 7 2

Hare not nati:eably no law. The realization of operation ia tha

ral equivalents by refqrence numbers is possible only by tabular

path.
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In a similar manner can be comprised the tables of operations,

also, for the least positive residues both in the case of the

mutually simple components of comFosite molulus/module and when, in

these components, common divisor is present,.

§ 7.3. Full/totiL/zomplete system of deductions. Geometric

interpretation.

In the pr.sat paragraph will be examined the methods of

obtaining the full/total/complete system of deductions with the

composite modulus/module. Together with the purely arithmetic math:ds

to har3 expediently indicate also some geometric constructions, which

lead to obtaining of the full/tctal/complete system of deductions,

which are based on the gecmetric interpretation complex integers.

As is known, complex numbers by representative points on the

plans. Let us selezt the rectangular Cartesian coordinate system with

X and Y axes and unity of scale e and will lead two systems of
straight lines, parallel to axes with raspqct to X and Y axes ind

distant one behind the the parallel to it another at a distance of e.

The origin of coordinates (point of intersection of X ad Y, axes) let

us dasignate through 0 (Fig. 7. 1). Then ths points of intersection of

I
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these straight Lines will represent complex integers.

Page 393.

Along the ixis of abscissas will be plottal/deposited the values

of the real parts of the complex number, while along the axis of

ordinates - val'ie of alleged parts. Thus, point N with coordinates

(p,q) represents the complex number p+qi. The straight line OM

represents valueV. Norm itself N is represented by the area of the

square, constructed on the straight lina OM (square ORLM). Here

OR=OM=RL=LMN4. If entire plane is covered with such squares (carrying

out of the straight lines, parallel respectively OM and OR, at the

iistancesW one from another), then to the apexes/vert.xes of the3e

squares will correspond the numbers, multiple p+qi. Thus, from the

condition of perpendicularity OR and OM it follows that to point R

corresponds a complex number -q+pi and quotient -q+pi/p+qi=i. As a

result of parallelism OM and RL to point L will correspond complex

number (p-q) 4(p+q) i and the corresponding quotient will be equally

1+i.
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A A

N~ N 7 . aa

I ,- N - A

L r as nube tasrigh lies paale ORa OM ynubr"

(st ra l , ll I*. Ao 1 ai.

A , , s - 1 , , A..N ..-

Let ..e. i,-v.nv apex/vertex ofti qurfrmdb srih

Fig. 7.1I. ceomatri: representation of complex numbers.

Page 3914,

Lint us number tti straight lines, parallel OR and ON, by numbers 0

(straight line OR), 1.2,... ,, -1, -2,... ,-1 and 0 (straight tine

ON) * 1.2,... ,S, -1, -2,... ,-S.

Let be given apex/vertex of this square, formed by 1 straight

line, parallel )R, and s of straight line, parallel OM. To point T

will correspond number L(p+qi) s(-q~pi)=p-sq+(.q~sp)i, and quotient

----- Ada
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of the division of this number into p~qi is equal I-si. As far is

points are concerned, which lie within any square or on its sides,

but which do not coincide with its apexes/vertexes, then they

repres3nt the nuairs, which do not separate into this modulus p4~qi.

Let be given any two squares F aa d A. let us superimpose

these squares one on top of the other so that their corresponding

ipexes/vertexes would coincide. Let us name the internal points of

4 these squares, wbizh coincided during this imposition, congruent.

occurs the very important property which let us formulate in the form

of the following theorem.

Theorem 7.!4. The numbers, depicted as congruent points, are

congruent between themselves in modulus/module p~qi.

For simplirity lot us take as one 3f the squares square ORLN

whose apex/vertex a coincides since the origin of the coordinates.

T'he second square we will propose by such that its apex/vertex r,

which zorrisponis luring the imposition to point 0, represents number

($p-sp) + (1.q#sp) i.

Let certain internal point V of square ORLM represent number

iza~bi. Then congruent as it point will represent number

B(1.q-sq4.a) + (lq4sp~b)i. However , the dif ference BA= (Ip-sq) +(tq~sp) of



a'

DOC =81023919 P AG E

i, as shown above, is divided into p+qi. consequently, B A (.o1

p+qi)•

So that tha thaorem would be provei for any pair of congruent

points, it is possible each of the squares to compare with square

ORLM, ind if B ind 9'as the representative points of two different

squares, each of which is congruent to the point, which represents

number A, then occur the comparisons

SB A(mod p+qi).

B' - (mod p 4 qi),

whence it follows that 5.B (mod p+qi).

Page 395.

From this theorem it is easy to do the following conclusion: in

all the incomparable between themselves numbers it can be as much, as

integer points are located within any square and on its two not

parallel sides, including one apex/vertax, and all these points

determine in the set the full/tctal/complete system of leductions on

this modulus. it is possitle to geometrically show, that a quantity

of such points is equal N=p 24q2 and that, therefore, a quantity of

deductions in the full/total/complete system is equal to N. However,

this was alrealy by purely arithmetic path established/installed by

the fundamental theorems cf Gauss both for the moduli/modules with

rAk
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the mutually simpl3 real and alleged parts and for moduli/modules

these whose parts have the common divisor, different from unity.

Special role play 4 squares, that have overall apex/vertex at

point ). The points of squares have in the known sense the "smallest"

coordinates. Uner this is understood the following: G( L, r)- the

point of squara ORLM and H ( 2, 1,- congruent by it the point of

any other squar (not having by its peak 0). Then has place }.

I 21I, I < I T2

Logical therefore to select any from these squares, in

particular squars ORLM as containing th. points, which correspond to

the smallest laluctions and which constitute the full/total/complete

system of the smallest deductions. As far as squares are concerned

remaining three of this type, then they, as can easily be seen,

contain the points, which represent the numbers, associated with the

specific above smallest deductions.

Thus, the full/total/complete systam of the smallest deductions

on modulus/module i=p4qi can be obtained ceometrically by the

construction of square with side passing through point 3,

and by the enumeration of all couplex integers, represented by the

internal points of this square.
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Example. To mike table of all smallest deductions on

modulus/module i=3+4i by geometric constructicn.

Fig. 7.2 lapizts the square, constructed on the side 1 32-4 5

Let us enumerat3 all integer points within the square, beginning to

the left and moving over the vertical lines. In all such points
- 4. 2

-- 3-i. -:3--4i. -2--2i. -2 -it, -2--41. -2 - . -I
-1--'2:. -1 -h, -1 4i. -I- - t. -I 6_,.t. 2.. - .
1-2:, I--3i; 1--4; 1 -5i. 2 - 31. 2-4i.

ql.

Page 396.

Here the smallest deductions are represented only by internal

points. on the sides of square it did not prove to be integer points.

This is characteristic for moduli/modules with mutually simple p and

q. If p and q have common factors, then integer points ire contained

also on the sid3s of square.

Let us consider another purely arithmetic method of determining

the full/total/complete system of the smallest deductions.

Method of determining the borders. Let &=p~qi - preset

modulus/modula and x+iy - smallest deduztion on this modulus/module.

method lies in the fact that first defiae the boundaries themselves

of a change in the real part; within the limits of these borders are
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defined the possible values of alleged part. The determination of

borders is conducted on the basis of the fact that for the smallest

deduction must ! satisfied the condition:
0 px~ qr

0 q (7. 18 )

0 < -py-qx < 1

or

O -< px + qy = r < p2 - q2,

0 < py- qx =r'<p2 -q2.
(7.19)

Besides thq smallest deductions examined and the methods of the

determination of the full/total/complet. system of the smallest

deductions for us subsequently large role will play the least

positive residues which were determined earlier into § 7. 1. The

determination of the full/total/complete system of the least positive

residues can b3 easily realized by the method of determining the

borders. Initial inequalities (7. 18) and (7. 19) will be rewritten for

this purpose ick the form

I - px-q - 1 I pu-qx I
-2 q 2" -T ' p . - (7.20)

or

v -'px qy -r -. v,":2 2

---- 7 \ , -- V (7.21)



DOC =81023919 PAGE

6,

Fig. 7.2. -aomatri= the representation of the full/total/complate

system of the smallest deduction~s accorling to modulus/module =34i~.

Page 397.

Example. T find the full/total/complete system of the least

positive residues from modulus/itodUle r? .1-4 1.

Here the system of inequalities (7. 21) will take the form

- 12 3x - 4y ~r :,^12.

For r and c" are possible values of -12. -110 ... 00.1p ... 012.

From the given system we obtain the equition

25x - 3r-4r'.

Vilue x will 3btain its great positive value with r=+12, r'=-12,

I
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25,, 84, whence .. =84/25=3. Its respectively small

negative value value x will obtain with r=-12, r'=*12 that gives

x -3. Thus, for x are possible values of -3, -2, -1, 031)2)3. let

us compute the appropriate values of y.

. x -3 -12 < -9-4u '2. -1 .-

- 12 12 - I 2 , -2

By testing we establish that these inaqualities satisfies only

one value of y=O.

2. x=-2; - 12 - 6- 4y.<12, -G<- 4, .b.

-12 8 - 3y <12. -20-3y 4 .

From these inequalities we obtain: y=-1, y=O, y=l.

3. x=-1 -12<-3--4y<12, -9 < 4u < 15.

-12 < 4 - 3 y -<12, - 16 < 3Y- 8.

For y are obtained the values: y=-2, y=-1, y=0, y=1, y=2.

4. x =0 -12 <4y -12,

- 12 3 y . 12.

We obtain for y value: y=-3, y=-2, y=-1, y=0, y=1, y=2, y-3.

S. x= 1 -12 --- 3-r 4y -< 12, -15 ---. 4u-
q

- 12 <- 4 - 3y< 12, -8.<-3 i <. 16.

For y are obtained the values: y-=-2, y=-I, y=0, y=1, y=2.

6. x=2. -12 <6- U<12; -18- 4 .
-12 <- - 3L. < I 2; -4 -. 3u. -,20.

We obtain the possible values: y=-1, y=O; y=1.

7. x=3 -12 K9- 4'- 12: -21 1;:', ^.
12 ..- 12 <,-- 12; 3 it, .- 24.

A IAI
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For yIs obtained *he value: y=0.

In all it is obtained also t,=25 values of the least positive

residues.

Page 398.

Lat us now move on to the gecmetriz interipretation of the

full/t~tal/conpleta system of the least positive residues. Let

modulus/module zipeqi. Let us turn to Fig. 7. 1. Let us write the

coordiaates of the apexes/vertexes of sqjuare ORLM: 0(0, 0), R(-q, P),

L (p - q, p+q) , 13 (p, q) .

Let us write the equations of straight lines whose iritersactiri

formed the square:

(0) npwiaA OM: pg - qx= 0,
QnPH~mai 0OR: px-qy -=0, (.2
0_1np~imaR RL: py-qx=.V, (.2

ipaiLAI: px -qy .V.

Key: (1). straight line.

Comparing these equations with (7.19), we see that they reflec-t

limitations in those permitted cf a change in values x and
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y-component of the least positive residues they compile an equation

of striight lines by intersection of which is formed the square,

which contains the internal points, which correspond to the

full/total/complet system of the least positive residues in the

following form:

py -qx --2, py-qx --T ,N '

px - qy = -- , px - qy=--. (7.23)

Fig. 7.3 13picts the square, limited by the sides whose

equations are represented (7.23). Here the apexes/vertares of square

have the following coordinates

jP- p -: V9
2 2 2

Let us giv3 the geometric interpretation of the theorem of

Gauss.

Page 399.

Earlier it was shown that all numbers a+bi, which separate into

the preset complex number ;=p+qi, divide/mark off infinite plane into

many squares with the side, equal to 1 p2 - q-' To each number, which

does not separate into modulus/module m=p+qi, corresponis the point,

arranged/located within one of such squarez.
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All numbers within certain specifiz square together with zero

form the full/total/complete system of ieductions. Consequently,

there is an infinite multitude cf full/total/complete systems of

deductions.

The full/total/complete system of the smallest deductions

zontains only square ORLM. Further, it is known that the numbors,

congruent in molulus/module m, occupy in their squares congruent

positions. Let us select among many squares the squares which rontaia

real deductions from 0 to N-i. On our drawing this will be squares

OMNIR 2 ; AtM3N,; N - X0 7 NON S  (Se? Fig. 7. 1).

Among these squares, obviously, there are no such which are

congruent relative to real axis. In fact, by hypothesis (pq) =1

therefore first Ln the natural series real number, which separates

into modulus/module =o+qi, will be number p2 +q2 (in Fig. 7.1

apex/vertex of square Nq), therefore, only beginning from square

NeNgRIONi it begins the repetition of the squares indicated, and

this it means that for all real deductions from the squares indicatei

will be locatel thi congruent points squared ORLM of the

full/total/complete system of the smallest deductions.

MINNOW
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gR

Fig. 7.3. Geometric representation of the full/total/complete system

of absol ute-smal lest deductions according to .odulus/u~dule m=p~gi.

Page 400.

§ 7,4,* Primitiva roots and indices*

Theorem 7.5. If a~bi - complex integer, mutually simple with the

prime number m=p~qi whose norm is equal to N=pz~qz, then

4 (a + bi)N-i m (mod in).

Proof. Let A indicate the set of the full/total/complete system

of deductions z,. on modulus/module &.frcm which is

rojectod/throvn out zero deduction.

We f orm products (a-'bi) , (a+bi bi) ,., set of which let us
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designate through A'.

these products is divisible by ;4 and therefore lack of

It is obvious, none of, theu hao the congruent with it deduction

in set A, i.e., (a+bi)a ---'(modA), (a+bi)j---'(mod ), (a+bi)-yy '(mod .),

where ' y', - number of the set A. The set of numbers

S, lt us designate through A". We further fore such

products of numbers in each set Ao&,a:

P(a +bii)'cc(a+bi N -P

But numbers of set An are consecutively/serially congruent with

numbers of set N' and PVP" (mod i) (since numbers of set A" coincide

with numbers of set A, undertaken in the changed order); theref,re

;PZP (mod ;) either

m (a+ bi) ' - ' P (mod t),
( [(a + bil" -  - 1/ 0 (mod m ),

whence, since m - prime number does not enter into the single

dividers/denominators of number P=noee;..

(a+ bi)" ' I 0 (mod n)

or

QED. (a bi)X -  I (mod m),

Paqe 401.
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Theoram 7.6. If a+bi -comPlex integer, mutually simple with the

simple complex integer j=p~qi with the nor., equal to m,. and t-

smallest index, for vhich (a+bi,= 1(modr;),the t is the

divider/denominator of any other index k, for which (a - bi)"= (mod i)

Proof. Let us assume that t is not divider/denominator k; it is

obvious, there is such integer a, for which difference nt-k~t.

'A Further from (a b0' 1 (mod rn) and (a -r bi)k I(mod mn) follows that

whence
(a + bi)h. [(a -bi)neA- 1J 0 (Modm

or

(a + biyh"-' - I (mod in),

* i.e. they arrived at the fact that there is a degree of number a'bi

with an index lass than t, which is ccngruent with unity. This

4 contradicts assumption.

Corollary. t divides or equally *-1. since according to theorem

7.5
(a +bi I (modmW).

Determination. Complex integer h. mutually simple with the

simple complex integer ;, with the norm, equal to NI, is called
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primitive roots on modulus/module ', if the smallest exponent of

number h), congruent with unity in modulus/module n, is equal t3 N-1.

1' Theorem 7.7. If h designates primitive roots on modulus/module a

whosa norm is equal to N, then the terms of series/row 1,

, h .... '-" wll be pair-wise inccmparable between themselves,

i.e., this series cepresents the full/total/complete system of

deductions, if ve to it Jcin zv.ro element/cell.

Page 402.

Proof. Actually/really, from

it' (modrn)

0O<k < I< P- I

it would follow

41-h = I (mod?;)

O</I-k<p- i.

This contradict3 the determination of primitive roots, i.e., to

theorem condition, therefore, we have N-1 the incomparable between

themselves numbers, which form the full/toal/complete system of

deductions, with excepticn of zere deduction.

From theoca 7.7 it follows that for any number A=a~bi. amtually

simple with odulus/module i. ccmrarison h--A(modn) has unique
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solution p. As It case of real numbers, let uis name .athe index of

number A on modalus/module ;m. By analogy with region of real numbers

correctly following:

M(ind(a+bi)+ind(c+di)+ ind(k+li)+ . .. )(niodN- 1).

Actually we have:

a+ bi hind (a+bi) (mod mn).

c i ind (c+di)(m di)

k+Ii =Aand h+U) (mod n),

..........................

After multiplication we will obtain

(a+bi).(c+di).(k+Ii)..w
/1)nd (4+b,)+Ild (c+dO)+ind (I+li)+... (mod in),

on the other hand,

(a+bi)-(c+di).(k+ Ii)..m

=hind [(a+bi) -(c+di) -(h+10... ](mod n).

Analyzing two latter/last expressions, we come to the assarti~a

m (ind(a+bi)+ ind(c+di)+ind~e+II)+ ... )(modN- 1).

Page 103.

Example. Lat us construct table of indices for the

modulus/module 5+21. Here as the primitive roots, ive.. for the basis

of index it is possible to take 2, Since 228=I (riOdS-2. Me find:
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i .20 a 1 210 - 3 + i 2t °  -- I ,-2i

2' 2 211 atl1-i 221
22 - -- 2i 21 at 2-2i 22 2 -'.-2i
2am 1+3i 21 3 m 2 i 2.3i -2 -i

" 24 w- -i 214 m--- 1 224 3-i
26 m-2--2i 21 --- 2 225
24 m 1-2i 216 m 1+2i 226--2-.-2j
27 

a i 2 7 = -I-3i 22 7 -2-i
2s n2i 218 a I+i

29 a 2-i 219 a 2+2i

Therefore tabl9 will be represented in the folloving focm:

m;=5+2i; N=29; h=2.

H.- HH- HH- 14-

0 1 8 2i i5 -2 22 -241-2i
1 2 9 2-i 16 1+2i 23 -2-4-i
2 -1-2i 10 -3+i 17 -1-3i 24 3-i
3 1+3 II 1 -i 18 I-i 25 -- i4 -- i 12 2-2i 19 2 -2i -2-=2i
5 -2-2/ 13 2+i 20 -1+2i 2-ii
6 1-2i 14 -1 21 -i
7 i

Key: (1). Index. (2). Deduction.

§ 7.5. System of rosidual classes in complex domain.

Is the present paraqraph by analogy with real region we will

construct the system of residual classes for complex integers.

Lot us selact n of mutually prime complex numbers ,,,.

i, ..... , ..... m, by the basis of system ."! and Al=m,...m



DOC = 81023920 PAGE

,7 Page 404.

Let us name complex number &=a~bi cepresentable in this systes

M, if a+bi it is the saallest deduction on modulus/module N,

otherwise of A it is not represented in this system. Since norm N is

equal to the product of norms r j, and a quantity of the smallest

deductions is equal to norm M, the total quantity of representable

numbers is equal to the product of the norms of bases/bases.

Let us designate the smallest composite deductions of number

on bases/bases r , respectively through

Theorem 7.8. In the system with mutually simple bases/bases

it,i 2 ...M2, , any represented number A=a+bi the only form is represented

as the set of its smallest deductions on the basis of the system:

Proof. According to the determination of values ;. , *..

take the place of the comparison:
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A = , (md in,),

A a , (mod in), (7.24)

M , (mod.ms).

Lat us assume that there is one adlitional represented number

* A'. representel as the same set of the 3uallest deductions. Then for

it are valid the same ccmarisons

" ~A' ---1 (modmO),

tA - (modm,),

'1 . . . . . . . . . .

~z(mod t ). -

* " Page '405.

fHance it follows that must be implemented the comparisons:

A' -A (mod i,).

4" i A' 5: A (iod m),

SA' (mod m.).

Then in view of the mutual simplicity of bases/bases A' =(mod [1)

ve assumea that A and A' - represented nuberso. All

elements/cells of the class of the smallest deductions are not

comparable between themselves, therefore, A and A' as the congruent
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between themselves elements/cells of this class identically coinci:19.

Thus, reprissnted number A is reprssented in the form

~.Let us assume that A is represented as another set of

smallest deductions A=( , ,~ j This means that are implemented

the comparisons:

A (modin)

A (mod m,), (7.23)

A (mod m,).

Comparing (7.2 4) with (7.25), we obtain the comparisons

S(mod in1 ),

f6 (mod m2),

S(mod m.),

whence for reasons presented abcv* follows ;1 a2* 2

Deductions a,. a-,...,we will call the digits of the representation

of a number in this system.

Let as give an axasple of the representation ef nmesithsstem

of the residual classes

Nora N=5525.

Page 406.
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Example. To show that number A--56-78i is represented number and

to write its issue in the adopted system. It is necessary to show

that A=-56-78; - the smallest deduction on the modulus/module -

74-71.

According to formula (7.5) we obtain z=-56 and y=-78. From the

same formula lot us find the digits of number

a I =2+3i; 52='; ;3= -2+2i.

-lThus A= -56+78i=- (-2+3i; 5i; -2+2i).
(

Above is introduced the system of residual classes for complex

numbers, taking as the digits of the representation of number A the

smallest deductions A according tc the basis of system. Analogously

can be constructed the system of residual classes, if we as the

digits of the representation ef number h take its least positive

residues. From the point of view ef the real system of residual

- classes this path is equivalent to the use/application both of

positive and negative digits at cn real basis/base pi with the

fact, in order to J al P. For complex lomain the possibility of the

construction of system with the least positive residues as the digits

has very important value in view of the special

features/peculiarities in the location of the represented numbers in

the overall range, inherent in this method of representation. For the

representation by means of absolutely the smallest deductions occurs
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the theorem, analogous to thecrem 7.8 about the uniqueness of the

image of the represented number in the system with the mutually

simple bases/bases. In this case It goes without saying the

represented number is defined as belonging to the class of the Least

positive residues on modulus/module M.

7. theoretically important question is the

production/consumption/generation of tha sign/criterion by which it

is possible to judge about the equipment of this number with the set

of , described by the chosen bases/bases. If in the real

region this question is solved simply: number AEP when and only

when A<&, where 9 - product of real bases/bases, then in the

composite plane the corresponding criterion is expressed by the

systam of the inequalities whose practical use is complicated.

Page 407.

In particular, so that the preset number A=a+bi would be

represented in system M=p~qi of the smallest deductions, it is

necessary and sufficient so that would be satisfied the condition
0<ap--bq=r<p2 -q--N,
0 bp-aq ,'2- -q2---.N. (7.26)

Let us fini now the conditions, superimposed on components of

the complex number i=a+bi, represented in system .
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Theorem 7.9. If A=a+bi, it is reprasented in system M=p+qi of

the smallest deductions, then fcr ccmponents a and b has the place:

a) -q<a<p, O<b<p + qOftnpn p>O. q >.);

) O<a<p-q, q<b<p Onpu p>O, q<o;
Lt) p p-q <a <O, p <b <q L npu p<O0, q 0-;

A) p<a<-q, p -q<b .<O0npui p<0. q-i.

Key: (1). with.

Proof. Let A=1+bi be is representel in system M of the smallest

deductions, then from (7.26) it fcllows

a -P-qr, (7.27)

b =qrpr (7.28)

where 0%r<j; 04'<N.

al According to condition p>O, q>O; therefore if we take r=N and

r'=0 in expression (7.27) and r=rt=W in expression (7.28), then we

will obtain

!"V
a= pr - qr' pN

;- a .--q-- .- q- p.
b -- 0q .--p ' q - pN

-- N -- q -q p,

i.e. a<p. b<qp.

On the other hand, after taking in (7.27) r=O, r,=N and in

(7.28) r=r'=O, we will obtain a>-q, b$O.
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b) 8n conlition p>O, q<0; therefore

Pr -qr' p.V-q.V

-- qr-+-pr O. q - P.
-.T - -- =P.

Page 408.

On the other hand,
a> ~ -p.O-q. pO4-qNa> :7N - =0, b> -E ,v q"

c) Since p(O, q>O, then
p .O-q -0 qN -p.o

SN 0 N

p-N-qN q.-O-pN
a> N =p-q, b> N =P

, d) With p<O, q-<0

p.-0-qN PO0e7.Oa < N =q, & < 0O,'
N IV

a .V q.V ' pN

Dstermination. Complex integer 1=aibi we will call represented

in the system of absolutely smallest subtractions, if it is the least

positive residue on modulus/module M=p~qi.

Similar to the system of the smallest deductions it is possible

to find necessary and sufficient conditions of the reprosentability

of *umber & in system n absolutely of the smallest deductions with

norm N which are
N- ...< i + bq --r< -- .

(7.29)

2 < bp - q = r' i<

~Theoram-7,10. If A -abi is represeated in system ;=p~qi of the !
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least positive residues, then components a and b satisfy the

following conditions:

a) -- (p+q)a <-(p q),-"(p+q) bi(P+q)
.- np i p>0, q>0;

2 2 2

""inp. p>O, q<O;
• , V q - , --q . n -q b / -- ' 2

2fnpH p<0, 2 2 2

!, " G~np - <O q<

Key: (1). with. -

r Proof. Let us suppose A=atbi J.s represented in system I=p~gi

absolutely of the smallest deducticns, then

a = Pr--N"(7.30)

b N ' (7.31)

wher3 N N N N---7 !; --- <r' "<T N

a According to condition p>O, q>O, therefore, if we take in

exprassions (7.30) and (7.31) respectively
N NNri = r- A , r' ----

then we will obtain upper bounds for a and b

N N N . Na _ _ < Pr.q p--q
N T' b< N 2

For lower boundaries let us place in expressions (7.30) and (7.31)

respectively the values:

Li Siftl



DOC 81023920 PAGE # G 3NN , N) N ,

N N N V
__-- ___

-
__

-  
__q_- __-N-P-' p _*t

r= - - , r> =- h = -y

a> N 2 N 2

A.alogously are proven cases b, c and d.

With the carrying-out of the arithmetic operations of the

relationship/ratLo between the digits of the representation of the

components of operations and result the same as in the real region.

Theorem 7. 11. P=e.~,.. ) -f 1  n), C==A JB(' 1 0~. yn

a, n - Vj=+'cj'mj,, where .j - one of the numbers 0, 1, 1. 141 in

first type systam and further in second type system.

Page 410.

Proof. aj=a,+bii, j=a2-ib+i.' The circumstance that aj and .: -

digit on basis/base rj=Pj+qji, indicates for first type systems that:

0 _< b fp j - a t q ! < -, 0 alpi +bbqj
.2 r- 2  -<< 1 7 .19)

azPj + b2qj < 1 b2 p - a2qj <
0 . <I, -7,-- - "

?2r sum J+ j it is possible to write

;j-7 (aj -- a 2)pj-(b, ;b2 )qJ (b1 -Lb2)pj-(ao -- a2) iqj

Pj-3qj
(7.33)
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in the comparison (7.32) it is possible to write

(~1a2)1 ±b,--b)q1 -~ (b - b-) p - (at - a2) qJ

(7.34)

i.e. in each of these fractions it is possible to isolate whole part,

equal to 0 or 1, whence follows the assirtion of theorem.

For second type system occur the inequalities:

1 b,pj-atq, I alpp - biqj I
7'T 24 ' 2" < ~ q , T2' (7.35)

Sa2pj - b2pj -bp-azq,<

2<p q~j 2' 2 P;q <

Then it is possible to write

- (a,+a:) Pi+(t + b2) qj

(b 2)pi (t -a* . (7.36)

From these inelialities also follows the assertion of theorem for the

representation in second type system.

A (a,%. an and B A P2, .. two complex integers,

represented in system 8, whersz,j -$rnaIH*%+&.G~e' +e.~~ji

deductions.

Page 411,1

.4
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Then, if Aa-B, AB are representable in system M, on the basis of

the property of comparisons we have:

In .this case sum J 0j, product , and difterance -- are taken

respectively on solul!/modules mj.

Example.
'~a) A=4+5a=(-i, -l, -21); 8= i-4i. (-i, -1-I--,.

* Let as system 8 be undertaken

.; ! ,i. ma  -~2- i. r,7 3 2.

then M-3 11i.

Let us finl sun +;8=-i. -1, -2i).(-i, -1, -1-i1)(2i, -2, -1-31)

or into absolutely the smallest deductions A 8,i, 2il . Easily it

is checked, that a number (0, i, 2i1) exists 51i and it is equal to

sum (4+5i1)( 1-41).
• " ,- 3+ 5i =(o. i. 2); d= j+ 4,= 1- . j, - i).

Let us find the difference A-B=(i, O, 2+1) or in least positive

residues A-B=(i, 0, -1-i). By direct testing we establish that a

number (-L, 0, -1-1) exists 2+i and it is equal to difference
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0(*SL) - 1+ 41)|

1 + , 1 3 i (0 , 0 , -2 , ) ; 1 --i = (0 , -- 1 j~) .

Let as fici product iB=(O, 0. 2-21) or in absolutely the

smallest deductions AB(O. 0, L). By testing we are convinced, that

number (0, 0, 1) is actually/really product (1+3i)x( I+i)=-24(i.

The operations of addition, subtraction and multiplication

examined relate to a number of accurately of feasible above any

*arbitrarily those undertaken numbers; from the point of view of

uniqueness it suffices to require the nonappearance of result of

operation for the range of the representation of numbers accepted.

However, livision feasibly hardly aver. Therefore in the system

of residual classes we examine the operation of division only when it

can be carried 3ut with obtaining of exact quctient.

* Page 4112.

However, generally it is possible to examine the case of the

division, when juotient is not integer. In this case we obtain formal

quotient.

Let . .... ) be divided without the remainder/residue into

t... us f nd the quotient
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whence CB=e and

where to eat one of the deductions of ull/total/coplete system

on modulus/module m. From this equality we have

YI- Y2 Y= . ' .. '

from which it is clear that the components of quotient are obtained

by the step-by-step division of the corresponding components of

dividend and divider/denominator, in this case if there is no

fissionability :ompletely, then to the component of dividend is

e. adjoined the corresponding basis/base, multiplied by this deduction

so that j+'k^ would be divided completely into . ,. It is

obvious, this division in a single manner will determine digit 7J. if

kj will be undertaken frce the full/total/complete system of

deductions.

Example. Let us take system M in the following form:

,n,,2+i; ,,t=3+2i; M=4+i;, M=9+32i.

Lot us divide in this system 2eLi=(-1; 1-i; -1-i) into a number

3 ia(I, -1, -1)
2 -. _ 4, (* I ;  I--._ -- -i) - I  ;1 ,.

By testing we ace convinced, which (-1; 1.i; 1i) is quotient 3f the

division 2+4i on 3.i, i.e., I+i.
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Example. L~t us take system m=1+i; ;2=2+i; ;3-3+21; =-3+11i.

Lst us consider tha division of a number 4+41 into a number -4.i with

obtaininq of tha formal quotient

4-4i (0. I. -2)4 ' (,-, ) -(0, -1. -2) 1=-- U.

Page 413.

Actually/raally, -1+51 there is the formal quotient, obtained, when

* as the dividend is taken 4i41 plus product -241 to the modulus/modale

of system -3+111.

If divider/denosinatcr is divided into any basis/base W,, then

this it means that the remainder/residu- on this basis/base is equal

to zero, however, since is assumed that the division is implementel

* completely, then the corresponding remainder/residue of dividend is

also equal to zaro; therefore we have in this case step-by-step

division of 0/0, i.e., uncertainty/indeterminancy. The

disclosure/sxpanslon of this type of uncertainties/indatermaiancies

requires the enlistment of further considerations.

The methodology of the translation/conversion of number

..... . .. ...... ) from the system of residual classes into the positional

system the same as for the real region.
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Are chosen the orthogonal bases of the system:

Bi = (1, 0, 0,. .. 0),

h2 =s (0, 1, 0 . .. 0), (7.37)

B.= (0, 0, 0.. , 1),

such, that

Am. riB+a2B+. + an, (niod M). (7.38)

From (7.37) it is evident that

* D-J' J, (7.39)
mj

moreover ,, which can be named the weight of composite orthogonal

base Bj of system ;, is determined from the comparison

--- m I (mod mnA). (7.40)
Mj

For the clicity let us consider an example of the

translation/conversion of the comFlex number a.

EZample. A(1-. 1,i 1+21) ;

M 2+,) (3+2, (4+,) z9 +32.

Page 414,

Let as construct the orthogonal bases of the system
t9+32i

-- +1 (1 -t I ot ;md , O l - IO, a I (mod 2 +,).

Here i=i. sinc 11-10inl(mod2.i). Consequently, ,-i-io-tO,

Bs9+321"= 3:"" == (mod3+2,) S& (7-k)t I (mod3-+-2,).
2i
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2=i,Y; then

(7 + 6i) ;2 = (7x- 6y) + (6x + 7y) i.

Through formulas (7. 3) we find x end y
3(7x-6y)+ 2 (6x+ 7y)= 3  X= I,

3 (6x 7y)-2 (7x-6y) 2 y= 1,

therefore B,(7+6 )(1+,-=I +1 3 i,

= +- *=(4+7i) *3 M I (Mod 4+i).

If *3=X-iY, that we obtain (x-7y)+(7x+4li=l (mod 4+i). we pass from

this composite comparison to the real equalities according to (7.3)
4 (4x- 7 y) + (7x+ 4i) 4 }.

* 4(7x + 4y) - (4z -
7y)= -1

9hence x=-I, Y-1 and B3=-11-31.

Thus, is f~und the system of orthogonal bases. Let us register
V J

number A in the form (7.38)

A=-- I -10i)- (1+13)+(1+2)(-11-3)(mod9+32i)K A a - 29- 14i (mod 9 ,-321).

Absolutely- the smallest deduction of a number -29-141 on the

modulus/module 9+321 - number A exists 12+91.

§7.6. On the imbedded systems of the smallest deductions.

in complex domain complex integer &+bi, represented in the
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system of the smallest deductions M, is not always represented in

system ;', wher3 N1,>N, although in system N' of the smallest

deductions a quantity of represented numbers increases.

Page 415.

For the real region this it goes without saying it is impossible,

k -! since the growth of bases/bases leads only to an increase in the

quantity of represented numbers with the

retention/preservation/maintaining of the representability of the

numbers, which entered into the unexpanded range. Analogous property

possesses the system of residual classes with the digits - absolutely

smallest bases/bases, which makes this 3ystem of of more preferable

for the realization.

Determination. System M of the smallest deductions it will

consider imbedded in system ;' of the smallest deductions where

N. >N. if any represented in system M a number is represented also

in system M'.

Prom the 4aometric interpretation of the system of residual

classes in complex domain it is evident that system N - square T

(Fig. 7.4) is Lzbedded in system ;' - square G, when the entire set

of the points, vwhi:h are the smallest deductions of ,. , is
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contained squared G. For system '-Mrnof the smallest laductions

(let us note thit ;I.i) must be chosen from the fact that on the

inclination/slope of the straight line WN is superimposed the

specified condition.

* 1

4

L(

• 44

I.
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M -6

4 
'&

R r A4.- 
- 0 2 4

8 '-6-4 AIZ

-R 0 2 p1  4

Fig. 7.4. Fig. 7.5.

Fig. 7.4. Geometric representation of two systems of smallest

deductions, one of which M is not imbedded in system MI.

4.

Fig. 7.5. Geometric representation of two systems absolutely of

smallest deductions where system M is imbe-ded in system M'.

Page 416.

- System 9 of the least positive residues is always imbedded in

system N'=m. Actually/really, square RaPN of system N=p+qi will

always prove to be imbedded in square R'Q'P'*' of system

;'=(p+qi) (p'+q'i) (Fig. 7.5), since both they originate by center of

coordinates, and a radius of the field, circumscribed around square

RQPI (R= (ps+q)) ,~ is always lower than the radius of field,

inscribed into square R'Q'P'NI (R' 2 P " p '
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Example. ;=1+3i - system of the smallest deductions.

mi=2+i; M'=Mm1=-1+7i.

From Fig. 7.4 it is evident that system of the smallist

deductions is not imbedded in system M', since the part of it of the

smallest deductions, namely i; 2i; 3i, is not the smallest dedu:tions

of system MO. But if system N=1+3i is the system of the least

positive residu3s, then it is imbedded in system !'=-1*7i (Fig. 7.5).

§7.7. Isomorphism of systems N of composite and real deductions.

2a

Let as the basis of system I be undertaken
m1 =pA+WqS; =p+qi, .. , p,,+q-,;

I% M2 mi ... M-= P +q,

with the norms, equal to respectively N,, A'2 . N,, N, where

(pj, qj)=I; (p, q)= I.

Let be further for each basis/base determined the coefficients

of isomorphism P=ujq-vjPj,p=uq-vP, where uj, uj and u, v satisfy

conditions of mutual simplicity of numbers Pj, qj, p, q. i.e.

ujpj+ujqj, , ,lp+tq--I.

Then is valid the following theorem.

Theorem 7.12. Any complex integer A=a~bi from the set of

- .U~i~ML
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represented in this system numbers is represented in this system in

the form A=a-.bi=(hi,h2,...,ha), where hj is the least non-negative

residue of numbers a+pjb .on moduli/modules Nj.

Page 417.

Proof. Proof ascaps/ensues directly from the theorem of Gauss.

Actually/really, since according to condition (py, qj)-=-. then according

StO he theorem 3f Gauss for any number A has place A_hj(modmj). where

hj - the least non-negative residue of number a--,pjb on

modulus/module Nj; on the other hand, if is composite deductions

of number A respectively cn moduli/modules mj,. then A=,-.(modmj).

therefore jhj(modmj). whence in the limits of the representability

of a number we have

a= {, M ...- , (h .h, . ha). (7.41)

Thus, any number of the set of the represeited numbers is

represented as the sequence of its real deductions on moduli/modules

i.e.

A = (ht, h2.  h,). (7.42)

This means that, representing a number in the form (7.42), we

pass from system ; with bases/bases M,, m2 . . m to system N with the

bases/bases, egaal to norms N,,N 2. .V, of these bases/bases, since

real deductions h, are found from the conditions

a + bpj m hj (mod Ni),
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whera a and b - zomponents of number A.

Determination. System M with the bises/bases, equal to norms

.V', N2. N we will call system R of real deductions.

It is possible at the necessary moment/torque to always pass

from system M of composite deductions to system M of real deductions.

In this consists the isomorphism of the systems of complex and real

deductions.

Furth3r, niturally, arises the question about the existence of

system M, which satisfies conditics of theorem 7.12 about the

isomorphism. Let us show that this system exists.

Page 4118.

Let m 1 = p -- qi: m. 2  - q2 : . M, - p, -- qni be pair-vise mutually

prime numbers with norms N, N2, ... N, and M =mt. m . ' =P + qi,

then, obviously, (pj., qj)= I and (p, q)=l. In fact, since mj - priam
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numbers, then azcording to the sign/criterion of prime numbers their

norms must be the prime numbers of form 4kfl. But from the theory of

numbers it is known that idle time a number of form 4k'l is

represented in the form of the sun of the squares of two mutually

prime numbers; therefore from Nj P4 it fcllows that (p,, qj) I.

It is easy to show that the norm of is equal to the

product of the norms of cofactors, therefore, it contains only the

simple dividers/denouinatcrs of form 4k+1 and itself is a number of

form 4k.1. Therefore from the criterion of the representability of a

number of form 4k 1 by form of pz2 qz we consist that (p, q)=1. 23D.

The case in question assumes that among the basis of system

there are no numbers Ii with the norm, equal to 2, meanwhile the

presence of this basis/base would consilerably facilitate the

organization of the work on the relative numbers. Therefore let as

show that also in the presence cf basis/base 1i in the system occurs

mutual simplicity of numbers p and q.

System A = p +w = n, m , , where mj - pair-wise mutually

prima numbers with the norms of form 4k41, in this case, as shown

above, (p, q)-1.

Let us now supplemert into this system basis/base i, =i, i.e.
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,= (l~i)mam2 ... ;. =(peqi)(li)=p-q)+(peq)i. Let us show that p-q

and p~q is mutually simple.

Aztually/r=ally, the norm cf M is equal to N=p 2 .qz,

hovever, since number N has dividers/denominators only of for. 4k1,

the very number N of also thA same form; therefore in its expansion p

and q they must be different parity, whsnce we consist that number

p-q and pq both odd.

Let p-q anJ p+q have the common divisor, different from 1, i.-.,

(p-q, p~q)=d, then

p-q=O(modd), p+q_'0(modd)

or

2p 0(modd), 2q-0(modd).

Page 419.

So p-q and p+q odd, the d - odd divider/denominator; therefore (d,

L-)=l, therefore, after reduction to 2 ws will obtain

p 0 (mod d), q M 0 (rod d)

or

(p, q)=d> 1,

which :ontradicts the condition of mutual simplicity of numbers p, q.

Consequently, p-q and p+q is mutually simple, QED.
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Example, ;t-l~i, iz=2,.i, ;:03+21,i,*4@i, ;s=5+21, i6=6,.i,

2,=5+4i. m.=2+7i, ;9=6+5i, u 0=3+8i. From the norm it is respectively

equal to: N1Z=2 , Nz5, N3=13, N4=17, Ns=29, N6=37, N7=41, NS=53,

NlI=61, N&o=73# ;=4122219 2265865i.

It is not lifficult to check with the help of the euclidean

algorithm that numbers 4422219 and 2265865 are mutually simple.

I

It is obvi3us, the rules of the arithmetic operations on the

complex numbers, represented in the form (7.4.), do not differ from

the rules of arithmetic operaticns in the system of residual classes

in the real region; therefore special on them we stop will not be.

Lot us consider examples. Let us sslect system N in the form:

;,=1.i, m2=2+1, 216=3+2i,

At,(l+)(2+1)(3+21)=--3-It4, N12, N2=5,

N3=13, 9=130, md let us determine for this system p=2*1 1*1=3,

Pz=1 *1- 2 e 1=3. p3= 2 *!3el= 5 .

Example. Let us register numbers A=-3+4i and B=-1-3i in the form

(7.4j). For ; wa have
-3+4.1mA,(mod2), ht= l ,

-- 3+4.3uMh(mod5), h2 =4.
-- 3+4.5 m ha(mod 13), h3 = 4.

Therefore -3+4i=(1, 4, 4). For B we have:

-I-3.1 a h, (mod 2). h,=O.
-1 -3.3 = h, (mod 5), h2= O.
-I -3.5 n h3 (mod 13), h3- 10.
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Therefore -1-3i=(0, 0, 10).

Example. i 't find the sum Cf numbers A=-3 +4i= (1, 4, 4) and

• B=- 3-3A =(0, 0, 10) .

Page 420.

4i

Solution: (-3(4i)(-1-31)=-4+i(1, U,4).(0, 0, 10)=(1, 4, 1).

Actually/r.ally, by testing we are convinced, that the sum -4+L is

represanted in system N in the form (1, 4, 1).

M ) A ,= 3= (, 3, 3), 8 = 1- -2i = (1, 3, 4).

A.B-(1, 3, 3).(1, 3, 4)=(1, 4, 12).

It is easy to ahack that number (1, 4, 12) represents product

leiB-3-6i.

Example. System H the same as in the previous example:

A=8+6i=(O, 1, 121, B=4+3=(I, 3,6),
A (0,1,12) (0 141.5 12 2, 2),
. (1. 3, 6) ' 3

i.e. quotient 8+61/4+3i is equal 2=(0, 2, 2).

§7.8. DeterminatLoa of the set of the reprosented numbers for systems



!i of comnosite deductions .rith the help of the real eductlors.

Let us assume that number x+iy is complex (smallest or abso-
lutely smallest) remainder of number A-a+bi accordinr tormodulus
:I-m+qi, where (p, q)=l.

Then regarling xiiy it is represented in system i of composite

deductions. And if h - real deduction of number I on modulus/module

then has pla-e x+iy=h(modA). If we find composite daductions for

numbers h=O, 1, 2, ... , N-I from modulus/module 1, then we will

obtain entire s.t of the represented numbers in system . of composite

deductions.

This methol is 4 nteresting to those that immediately is

established a correspondence between the sequence of real and

composite deductions.

Let us derive the formula, which matually connects the sequences

of real and smallest composite deductions. Let us find for

ht=k<N its smallest deduction from modulus/module M. for which we

will use formula (7.5)

hx + £+ (7.43)

Page 421.

Hers r and r' aire the least non-negative residue of numbers pk and

-qk on modulus/module N, i.e., r=pk-NM, r'=-qk+N(jl), where E=

pk/'] and [ - integers part.



DOC z81023920 PAGE * 7~

Substitutimg the value of r and r' in (7.&3) , ve will obtain

+ p I q (k-.+ ) q (-qk - ) j

it is final

x I)-Iyr k p) q-~ (T P ( q

whers, k=O, 1, 2, .. ,N-1.

Example. Lat RN3,Ii, N=25. It is necessary for system It to fial

out th3 set of the represented numbers according to formula (7.L4L).

Ql~o.ia9 k=O, 1. 2, 3. 4. . 6. 1 0. T=0.

Vo -+3i, V, -3 3i', V2 = -2-'3i, V3 = -I -3i.

V, =3i, V5 I - i i

'qk = 7, 8. Z=0, T1=1.

*~ -1 6i', V8 6i.

J Zrnk=9, 10, 11, 12, t=I I1 Y

V,=-2+ 101 , V20 1+10!, V11= 101; V,2=1+10i.

0 a. klA k=13, 14, 15, 16, 1, tj= 2.

*V13 2 +13i, I -1.13i, V 5 13i, V1 I- 13i.

0aak =17, 18 =2 Y1=2

't -h=19, 20, 21, 22, 23, 24 t= 2 1= 3

V9 -3 +20i, 2 -+ 20i, V21 =-1+204 22 20i.

Vw - 20i, V2 = 220i.

Key: (1). Fo r.

Let us further derive formula for the case of the least positive

residues. Let fo k<N be found out its least positive residue

then according to formula (7.5) we will have

j= -Y pr-qr' pr'-r qr .(7.45)
N N
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Page 422.

Here r and re are the least positive residues of numbers pk and -qk

on modulus/modula N; therefore

r.p = p-.4 ]. r -qk -. V r l

-2 k" L (7.46)

Let us rewrite (7.45), keeping in mind (7.46)

+A -k -v L (' )q (Pk-k -v 2 )

(q[' [(.P. -q

Thus, the set of the represented numbers in this system ;=p qi, vharg

(p, j)=1, it is determined from the formula

L -2I- oT L  (72' +
+ (P L 2 qf ) (7.47)

example. To find the set of the represented numbers in system

;*3+41 of absolate-smallest deductions. Here W=25, therefore, giving

k the sequence of values of 0, 1, 2, 3, ... , 24, we find through

formula (7.47):

,oV,., V , V 1 -2. V3 -3;

k - i ,= 62. 78= 9 3+; n2[i:

AAR~ k = 10, 11, 12 2 - I,[-1 2,
V=.g,,I+.j, ,1-2i, V,']l+2j;i== -i -..It;, -... _ ... _.
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xn. 13, 14, 15 [j]LiJ = 2.

k =16, 1 l 2. 18 1, 0 - 2. 3.~-1-j

k 21 3,

k &.hk22,'23,24 2~i 3. [1j 2

Key: (1) . for the values. (2),* for.

Page 423.

17,,9. Translation/zonversion complex integers of the positional

system into system M of coal deductions and vice versa.

Let be given system Mmm.m=p and MN
Pt. P2.I"" I
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respectively norm and the coefficients of the isomorphism of numbers

Further, let for the representation in system N of real

deductions is preset number A=a~bi. Then according to the theorum 3f

isomorphism we have a+bi=h(mod m), where h is determined from

condition a+bp=h(mod N), however, since

that accoriing to the property of comparisons V will obtain

a + bi m h (mod ml);

and a + bt w h.(mod m2 ); ...; a + bi m h (niodnm,

a + bp , h (mod N,);

a+bp m h(mod N2); ... ;a+bp r. h(mod N,),

from h-hj(mod.V,), it follows

a--bp M h, (mod.V),

a -hp h., (mod .V.).

a - bp h, (mod N.,).

and

a -bi h, (mod m, (7.48)
a -b i ---h. (rood ..

a - bi h, (mod m,).

hence

a - bi (h1 . h2.  h). (7 49)

Page 424.
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Thus, for the determination of representation (7.49) is

sufficient to find hj. frcu (7.48) with the help of the coefficient

of the isomorphism p of M. .. It is possible representation

(7.49) to find, also, with the help of the coefficients of

isouorph ism Pi. P2.p I n f act, we ha ve:

a +r bpi hz (mod N,),
a -bpz , (mod N.) (7.50)

a +bp,, =- h,(mod V,),

whence we will obtain representation (7.49)

Theorem 7. 13. If M M ... mn = (A -7q1i) (p 2 + q20) ... (P.-q.0), P1, Pz,.Pt, P

respectively the coefficients of isomorphism m1 and M, then thEA

coefficient of the isomorphism p of product M has a representation

in the system with bases/bases N,, N2 ,A.

Proof. In 3rder to avoid cumbersome calculations. the proof of

theorem lot us leal for n-2, i.e. , for the case when

from theorem coadition we have

P2 "22- r'02,
pu WqAp - p~q2) - V (PIP~ ,q)

where ul, uz, Y1. vz, u, v are connectel with the conditions

istp, +-,-uuq1 = UP- vq2=I up + q~I (7.52)
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Page 425.

Let us fini the smallest non-negative remainders/residues yj Ind

r2 number o from modulus/modulp N1 =p
2 , 12 1 and N2 =pZ2 +q2 2 . We hive

p kLM+71 and p=kaNzz, whence rj=p-kj~j and yz=p-kzNz or after

stat-ment of expression p, N1, N2 we will obtain
~~~y, = u ( qIp2 + piqz) - v (pip.- - qjq2) - ki (p -- q'),

1 1 (7.53)
4, .y2 =u(qp2 +pq 2 )__'(pjp 2 __qjq 2 )_ (p2- q;).

Let us regroup right sides (7.53) relative to p5 , q, in the first and

P2. qz in the second equality

Yt = (P2U + qV - kiq) q, -(p::v - qu ki kp,) p,
y2 = (pu + qlv - k2q 2) q2- (plu - qu -kp 2 ) p:.

Let us show that
uz =p2u+q 2v-kjq, vi=p 2v-qu +k pP,

u2=p1u+q1V-k 2q, v2=ptv-qtu- kp.

they satisfy with respect to first two :oniitions (7.52), for which

we form
(p2u + q2v - kiq1) p, +.(p2v - q2u -- kip,) q,

=pipzu + piq 2v-pklq +p2qiu - qtq 2u -ptkhq

=(pjp2 - qq2).u + (pjq2- 'pq,) v.

Latter/last expression is equal to one according to third condition

(7.52); therefore 1=pl,, analogously we will obtain

(plu + q1v - k2q.) Pz + (Pv - q~u - k-p-.) q: =

- pp2a + pzqtV - P.q2 k - pjq2 v - qqzu - p2 q2 k

= (pjp2 - qiq2 ) u -f- (P i q2 _ P2q,) v,

which is also agual to unity according to Latter/last condition

(7.52); tharefore 72*P2. Consequently, p, and P2 are the least
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non-negative residue numbers p cn modulus/modul - N1 , Nz, QED.

Page 426.

The validity of this theorem follows also lirectly from (7.48)

and (7.50). In fact, since in ccmFarisons (7.48) and (7.50) right

sides are equal, then

a + bp =- a + bp, (mod Ny)

or

b(p-) - 0(mod N).

Since p anl pj do not depend on salection A=abi that let us

assume that (b, NVy)=1, then p-p=0(modN), whence it follows that

P Py modNj) , I.e. P (Pt, P2,. P).

Now according to the recently proved theorem, it is possible to

indicate one mora, moreover the most practical algorithm of thq

representation of the preset number a~bi in system ;. In fact, since

p, (pi, p . ... p), and a= (at; a2 ; . .. an) and b = (Pt; P2; . . . P, then (7.48) it

is possible to rewrite

at + P, h, (mod .Vt),
M + 02P2 h2 (mod NO),

an+ Pn~ 1i h (mod N.~)

whence we consist that unknown deductions hj are found from

condition
(1, 2 ... , a.) + ( , O, h)(,, P- . . Pn)

A, (h1 2 ..I .),
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Erample. As the system let us take

=(1-- (2+-) (3+ 21)(4+0(5-2i)(I_6i)(5+4i)(7+21):<

x (6 4- 50 (3 + 8i = 4 749 285 - 291 214i
i" . here =e V= V1 .W.N 3 .V...VvN 6 .N7 ..V7 .,V..Vg o=2.5.13.17.29.37.4I X

x 53.61.73

P=(Pj, P21 P3, Pit P5# Pop P7, PSI P9, Plo)
=(1, 3, 5, 13, 12, 6, 9, 25, 11, 27).

Let us present number 1=3751+1842i in this system 1. For which let us

find representations its component 3751 and 1842 in this system, i.a.

3751 =(L, 1, 7, 11, 10, 14, 20, 41, 30, 27)

1842=(0, 2, 9, 6, 15, 29, 38, 40, 12, 17).

Page 427.

Then according to theorem 7. 13 we find

3751 -- 1842i=(1, 1, 7, I, 10, 1, 20, 41, 30, 27) -

+(0. 2, 9, 6, 15, 29, 38, 40, 12, 17).(I, 3. 5, 13, 12, 6, 9.'25, II, 27)=
(1, 1, 7, 11. 10, 14,20, 41,30, 27)+(0, 1,6, 10. 6, 26, 14, 46, 1v, 2 1)

-(1, 2, 0, 4, 16, 11, 34, S. 40, 48).

Let us now move on to the construction of the translation

algorithms of numbers of the system i into the ordinary positional

system. is valid the following theorem.

Theorem 7.14. For system M=(pj-,-qli)(p 2-q2i)... (P--q,J) P qi W it

norms N 2.. ...... V and coefficients of isomorpism , !': .... ,', as.

the orthogonal bases of system it is possible to take the least
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positive residues of numbers Bi=-"L-k in moduli/modules , whera

k,<.Vj are determined from conditionN
kjW7- =I (mod N,).

J

Proof. Let in system * be is given the number

"'a '4=a bi=(a, + 01i; a2 -fi i_,, -7. z , ,),

than
,4 --A (1, 0, 0, ..... 0) (al + 01ti; 0, 0, ..... 0) + . .

...~ +(0, 0o 0.. , 1) (0, 0o 0.. , a, + P',i) (modM).

Hare the numbers

q B ---(0, ], 0 . .. 0), (7.54)

h B1=(o, o, ... , o,0),

* and in the ral region, we will call the composite orthogonal

bases af system .

If we the norm of bases Nj consider as the basis of system,
N

then number B=-.kj, as is kncwn, they %re the orthogonal bases ..f

this system; tharefore

Ba I (mod Nj), B, = 0 (mod4-)

Page 428.

Let B,=cj+dji be the least pcsitive residues of numbers Bj on

modulus/module ,g i..,cj+dji=-Bj(modM), then, since Bj<N. on (7.14)

B, cj+djp(modN), but by force N-=,VN 2 ... N. and according to the

"wag",
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property of the comparisons

according to condition Bjm l(madA~j), consequently, cj+djpm 1('modNjg),

whence on bases of theorem 7.2 we have B*j=c+dji= I(modmj).

Analogously we establish that

B = Cj +dji=- omod 4)
* Thus, numbars Bsatisfy condition (7.541 of orthogonality,

QED.

*Theorem 7.15. Any complex integer A= 0h1,h2. ,/z) represented in

system M, is tha least positive residue of the number

h = Bjht+B2h2 + +. +Bh/z (mod N)

on uodulus/modul3 M, where B, orthog~na. bases of system.

Proof. Let representation A in system M in the real deductions

take form A~~i(~h~a.This means that a+bphj(modNj) or a~bp=

(h. ht2, .

Consequently, if B, - bases of system N,. then

a -I-bpinBihz1+ B,/i2+. + B,,h,(mod N) =h (mod N),

whence we obtain i=h(mod MA). Thus, absolutely the smallest deductions

of numbers 1ani h on modulus/module Nmust be equal, that also

proves theorem.
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Lot us consider the examples, which illustrate theorems 7.114 and

7.15. In these axamples is accepted the system: m;111, ;2-2+1.

5, 13).

* The orthogonal bases of system are equal to:

B,=-1105, Bz 1I326, 83 ITO. , B 1820.

Page 429.

Example. T3 determine the complex orthogonal bases of systam.

kccording to thiorem 7.114 we have:

II05=-cj+dj (mod4 -I23i),
1326 C2 - d4i (mod 41 -+23i),
170 C3-J+ d3i (mod 41- 23i),

Further, after determining the least positive residues of

numbers 1105, 1326, 170 and 1820 on the modulus/module 41+231, we

will obtain the unknown bases:

-B1 =9 + 32i, B2= -21-i, B3 = 1+13i. Bj= - I-3i.

Example. The complex number A has representation i=(1, 3# 6, 9).

To convert it into the ordinary positional system.

Accorling to theorem 7.15 let us find

h=1105.1-, 3.1326--1 6.170-L9.1820 (mod 2210)=383,
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whence 1=383 (2319S 4114231) ; therefore the least positive residue of

number 383 on ttie modulus/module 4i1+231 givO)S the unknown complex

number 4+31.
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